Deformation of determinantal schemes

Dan Laksov

Compositio Mathematica (1975)

  • Volume: 30, Issue: 3, page 273-292
  • ISSN: 0010-437X

How to cite

top

Laksov, Dan. "Deformation of determinantal schemes." Compositio Mathematica 30.3 (1975): 273-292. <http://eudml.org/doc/89258>.

@article{Laksov1975,
author = {Laksov, Dan},
journal = {Compositio Mathematica},
language = {eng},
number = {3},
pages = {273-292},
publisher = {Noordhoff International Publishing},
title = {Deformation of determinantal schemes},
url = {http://eudml.org/doc/89258},
volume = {30},
year = {1975},
}

TY - JOUR
AU - Laksov, Dan
TI - Deformation of determinantal schemes
JO - Compositio Mathematica
PY - 1975
PB - Noordhoff International Publishing
VL - 30
IS - 3
SP - 273
EP - 292
LA - eng
UR - http://eudml.org/doc/89258
ER -

References

top
  1. [1] A-K. A. Altman and S.L. Kleiman: Introduction to Grothendieck duality theory. Lecture notes in mathematics no. 146, Springer Verlag, 1970. Zbl0215.37201MR274461
  2. [2] H. Bass: Algebraic K-theory. Benjamin, New York (1968). Zbl0174.30302MR249491
  3. [3] J. Briancon and A. Galligo: Déformations distinguées d'un point de C2ou R2. Astérisque no. 7-8 (1973) 129-138. Zbl0291.14004MR361139
  4. [4] D.A. Buchsbaum: Complexes associated with the minors of a matrix. Symposia Mathematica vol. IV, Bologna (1970) 255-283. Zbl0248.18028MR272868
  5. [5] L. Burch: On ideals of finite homological dimension in local rings. Proc. Cambridge Phil. Soc. vol. 64 (1968) 941-952. Zbl0172.32302MR229634
  6. [6] J.A. Eagon and M. Hochster: Cohen-Macaulay rings, invariant theory, and the generic perfection of determinantal loci. Am. Journ. Math. vol.93 (1971) 1020-1058. Zbl0244.13012MR302643
  7. [7] Ega A. Grothendieck (with J. Dieudonné), Eléments de géométrie algébrique. Chap. IV, 1ere, 2eme, 3eme, 4eme parties, Publ. Math. de I.H.E.S., no. 20, 24, 28, 32 (1964, 1965, 1966, 1967). 
  8. [8] J. Fogarty: Algebraic families on an algebraic surface. Am. Journ. Math., vol. 90 (1968) 511-521. Zbl0176.18401MR237496
  9. [9] G. Kempf: Schubert methods with an application to algebraic curves. Mathematisch Centrum, Amsterdam (1971). Zbl0223.14018
  10. [10] G. Kempf and D. Laksov: The determinantal formula of Schubert calculus. Acta Matematica, vol. 132 (1974) p. 153-162. Zbl0295.14023MR338006
  11. [11] M. Hochster: Grassmannians and their Schubert subvarieties are arithmetically I Cohen-Macaulay. Journ. Algebra25 (1973) 40-57. Zbl0256.14024MR314833
  12. [12] S.L. Kleiman: The transversality of a general translate. Compositio Math., vol. 28 (1974) 287-297. Zbl0288.14014MR360616
  13. [13] S.L. Kleiman and J. Landolfi: Geometry and deformation of special Schubert varieties. Compositio Math., vol. 23 (1971) 407-434. Zbl0238.14006MR314855
  14. [14] D. Laksov: The arithmetic Cohen-Macaulay character of Schubert schemes. Acta Mathematica vol.129 (1972) 1-9. Zbl0233.14012MR382297
  15. [15] C. Musili: Postulation formula for Schubert varieties. Journ. Indian Math. Soc.36 (1972) 143-171. Zbl0277.14021MR330177
  16. [16] M. Schaps: Non singular deformations of space curves using determinantal schemes. Doctoral dissertation, Harvard University, Cambridge, Mass. (1972). 
  17. [17] T. Svanes: Coherent cohomology on flag manifolds and rigidity. Doctoral dissertation, M.I.T., Cambridge, Mass. (1972). 

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.