Deformation of determinantal schemes
Compositio Mathematica (1975)
- Volume: 30, Issue: 3, page 273-292
- ISSN: 0010-437X
Access Full Article
topHow to cite
topLaksov, Dan. "Deformation of determinantal schemes." Compositio Mathematica 30.3 (1975): 273-292. <http://eudml.org/doc/89258>.
@article{Laksov1975,
author = {Laksov, Dan},
journal = {Compositio Mathematica},
language = {eng},
number = {3},
pages = {273-292},
publisher = {Noordhoff International Publishing},
title = {Deformation of determinantal schemes},
url = {http://eudml.org/doc/89258},
volume = {30},
year = {1975},
}
TY - JOUR
AU - Laksov, Dan
TI - Deformation of determinantal schemes
JO - Compositio Mathematica
PY - 1975
PB - Noordhoff International Publishing
VL - 30
IS - 3
SP - 273
EP - 292
LA - eng
UR - http://eudml.org/doc/89258
ER -
References
top- [1] A-K. A. Altman and S.L. Kleiman: Introduction to Grothendieck duality theory. Lecture notes in mathematics no. 146, Springer Verlag, 1970. Zbl0215.37201MR274461
- [2] H. Bass: Algebraic K-theory. Benjamin, New York (1968). Zbl0174.30302MR249491
- [3] J. Briancon and A. Galligo: Déformations distinguées d'un point de C2ou R2. Astérisque no. 7-8 (1973) 129-138. Zbl0291.14004MR361139
- [4] D.A. Buchsbaum: Complexes associated with the minors of a matrix. Symposia Mathematica vol. IV, Bologna (1970) 255-283. Zbl0248.18028MR272868
- [5] L. Burch: On ideals of finite homological dimension in local rings. Proc. Cambridge Phil. Soc. vol. 64 (1968) 941-952. Zbl0172.32302MR229634
- [6] J.A. Eagon and M. Hochster: Cohen-Macaulay rings, invariant theory, and the generic perfection of determinantal loci. Am. Journ. Math. vol.93 (1971) 1020-1058. Zbl0244.13012MR302643
- [7] Ega A. Grothendieck (with J. Dieudonné), Eléments de géométrie algébrique. Chap. IV, 1ere, 2eme, 3eme, 4eme parties, Publ. Math. de I.H.E.S., no. 20, 24, 28, 32 (1964, 1965, 1966, 1967).
- [8] J. Fogarty: Algebraic families on an algebraic surface. Am. Journ. Math., vol. 90 (1968) 511-521. Zbl0176.18401MR237496
- [9] G. Kempf: Schubert methods with an application to algebraic curves. Mathematisch Centrum, Amsterdam (1971). Zbl0223.14018
- [10] G. Kempf and D. Laksov: The determinantal formula of Schubert calculus. Acta Matematica, vol. 132 (1974) p. 153-162. Zbl0295.14023MR338006
- [11] M. Hochster: Grassmannians and their Schubert subvarieties are arithmetically I Cohen-Macaulay. Journ. Algebra25 (1973) 40-57. Zbl0256.14024MR314833
- [12] S.L. Kleiman: The transversality of a general translate. Compositio Math., vol. 28 (1974) 287-297. Zbl0288.14014MR360616
- [13] S.L. Kleiman and J. Landolfi: Geometry and deformation of special Schubert varieties. Compositio Math., vol. 23 (1971) 407-434. Zbl0238.14006MR314855
- [14] D. Laksov: The arithmetic Cohen-Macaulay character of Schubert schemes. Acta Mathematica vol.129 (1972) 1-9. Zbl0233.14012MR382297
- [15] C. Musili: Postulation formula for Schubert varieties. Journ. Indian Math. Soc.36 (1972) 143-171. Zbl0277.14021MR330177
- [16] M. Schaps: Non singular deformations of space curves using determinantal schemes. Doctoral dissertation, Harvard University, Cambridge, Mass. (1972).
- [17] T. Svanes: Coherent cohomology on flag manifolds and rigidity. Doctoral dissertation, M.I.T., Cambridge, Mass. (1972).
Citations in EuDML Documents
topNotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.