The rationality of the Fourier coefficients of certain Eisenstein series on tube domains (I)

Liang-Chi Tsao

Compositio Mathematica (1976)

  • Volume: 32, Issue: 3, page 225-291
  • ISSN: 0010-437X

How to cite

top

Tsao, Liang-Chi. "The rationality of the Fourier coefficients of certain Eisenstein series on tube domains (I)." Compositio Mathematica 32.3 (1976): 225-291. <http://eudml.org/doc/89290>.

@article{Tsao1976,
author = {Tsao, Liang-Chi},
journal = {Compositio Mathematica},
language = {eng},
number = {3},
pages = {225-291},
publisher = {Noordhoff International Publishing},
title = {The rationality of the Fourier coefficients of certain Eisenstein series on tube domains (I)},
url = {http://eudml.org/doc/89290},
volume = {32},
year = {1976},
}

TY - JOUR
AU - Tsao, Liang-Chi
TI - The rationality of the Fourier coefficients of certain Eisenstein series on tube domains (I)
JO - Compositio Mathematica
PY - 1976
PB - Noordhoff International Publishing
VL - 32
IS - 3
SP - 225
EP - 291
LA - eng
UR - http://eudml.org/doc/89290
ER -

References

top
  1. [1] A.A. Albert: Structure of Algebras. Amer. Math. Soc. Colloq. Publ., Vol. 24, Amer. Math. Soc., New York, 1939. Zbl0023.19901
  2. [2] A.A. Albert: and N. Jacobson: On reduced exceptional simple Jordan algebras. Ann. of Math. (2) 66 (1957) 400-417. Zbl0079.04604MR88487
  3. [3] W.L. Baily, Jr.: On Hensel's lemma and exponential sums, in Global Analysis, a volume of assorted articles dedicated to K. Kodaira, Univ. of Tokyo Press, 1969. Zbl0193.49201
  4. [4] W.L. Baily,Jr.: Eisenstein series on tube domains, in Problems in Analysis: A Symposium in Honor of S. Bochner. Princeton Univ. Press, 1970. Zbl0211.10603MR361179
  5. [5] W.L. Baily, Jr.: An exceptional arithmetic group and its Eisenstein series. Ann. of Math., 91 (1970) 512-549. Zbl0202.07901MR269779
  6. [6] W.L. Baily, Jr.: On the Fourier coefficients of certain Eisenstein series on the adele group, in Number Theory, in honor of Y. Akizuki, Kinokuniya, Tokyo, 1973. Zbl0283.10017MR367320
  7. [7] W.L. Baily, Jr. and A. Borel: Compactification of arithmetic quotients of bounded symmetric domains. Ann. of Math., 84 (1966) 442-528. Zbl0154.08602MR216035
  8. [8] A. Borel and J. Tits: Groupes réductifs. Publ. I.H.E.S., 27 (1965) 55-150. Zbl0145.17402MR207712
  9. [9] F. Bruhat and J. Tits: Théorie des Groupes-Groupes algebriques simples sur un corps local: cohomologie galoisienne, decompositions d'Iwasawa et de Cartan. C. R. Acad. Sc. Paris, 263 (1966) Series A, 867-869. Zbl0263.14015MR242836
  10. [10] B.A. Fuchs: Special Chapters of the Theory of Analytic Functions of Several Complex Variables. Translations of Mathematical Monographs, Vol. 14, Amer. Math. Soc., New York, 1965. Zbl0146.30802
  11. [11] U. Hirzebruch: Über Jordan-Algebren und beschränkte symmetrische Gebiete. Math. Z., 94 (1966) 74-98. Zbl0161.03602MR206323
  12. [12] N. Jacobson: Structure and the Representations of Jordan Algebras. Amer. Math. Soc. Colloq. Publ., Vol. 39, Amer. Math. Soc., New York, 1968. Zbl0218.17010MR251099
  13. [13] A. Korányi and J. Wolf: Realization of hermitian symmetric spaces as generalized half-plane. Ann. of Math., 81 (1965) 265-288. Zbl0137.27402MR174787
  14. [14] I.I. Pyateckii-Shapiro: Géométrie des Domaines Classiques et Théorie des Fonctions Automorphes, Dunod, Paris, 1966. Zbl0142.05101MR197786
  15. [15] C.L. Siegel: Über die analytische Theorie der quadratischen Formen III. Ann. of Math., 38 (1937) 212-291. Zbl0016.01205MR1503335JFM63.0120.01
  16. [16] C.L. Siegel: Einführung in die Theorie der Modulfunktionen n-ten Grades. Math. Ann., 116 (1939) 617-657. Zbl0021.20302MR1251JFM65.0357.01
  17. [17] C.L. Siegel: Lectures on Riemann Matrices. Tata Inst. of Fundamental Research, Bombay, 1963. Zbl0249.14014MR266959
  18. [18] J. Tits: Théorème de Bruhat et sous-groupes paraboliques. C. R. Acad. Sci. Paris, 254 (1962) 2910-2912. Zbl0105.02201MR138706
  19. [19] L.-C. Tsao: On Fourier coefficients of Eisenstein series. Bull. A.M.S., 79 (1973) 1064-1068. Zbl0287.10018MR327664
  20. [20] E.B. Vinberg: The structure of the group of automorphisms of a homogeneous convex cone. Trans. Moscow Math. Soc., 13 (1965). Zbl0311.17008MR201575
  21. [21] A. Weil: Adeles and Algebraic Groups. Notes by M. Demazure and T. Ono, Inst. for Adv. Study, Princeton, 1961. MR670072

NotesEmbed ?

top

You must be logged in to post comments.