Linear forms and simultaneous approximations

Pieter L. Cijsouw; Michel Waldschmidt

Compositio Mathematica (1977)

  • Volume: 34, Issue: 2, page 173-197
  • ISSN: 0010-437X

How to cite

top

Cijsouw, Pieter L., and Waldschmidt, Michel. "Linear forms and simultaneous approximations." Compositio Mathematica 34.2 (1977): 173-197. <http://eudml.org/doc/89323>.

@article{Cijsouw1977,
author = {Cijsouw, Pieter L., Waldschmidt, Michel},
journal = {Compositio Mathematica},
language = {eng},
number = {2},
pages = {173-197},
publisher = {Noordhoff International Publishing},
title = {Linear forms and simultaneous approximations},
url = {http://eudml.org/doc/89323},
volume = {34},
year = {1977},
}

TY - JOUR
AU - Cijsouw, Pieter L.
AU - Waldschmidt, Michel
TI - Linear forms and simultaneous approximations
JO - Compositio Mathematica
PY - 1977
PB - Noordhoff International Publishing
VL - 34
IS - 2
SP - 173
EP - 197
LA - eng
UR - http://eudml.org/doc/89323
ER -

References

top
  1. [1] A. Baker: A sharpening of the bounds for linear forms in logarithms. Acta Arith.21 (1972) 117-129. Zbl0244.10031MR302573
  2. [2] A. Baker: A central theorem in transcendence theory. In Diophantine approximation and its applications, ed. by C. F. Osgood (Academic Press, 1973), 1-23. Zbl0262.10022
  3. [3] A. Baker: A sharpening of the bounds for linear forms in logarithms III. Acta Arith.27 (1975) 247-252. Zbl0301.10030MR376550
  4. [4] A. Baker and H.M. Stark: On a fundamental inequality in number theory. Annals of Math.94 (1971) 190-199. Zbl0219.12009MR302572
  5. [5] P. Bundschuh: Zum Franklin-Schneiderschen Satz. J. reine und angew. Math.260 (1973) 103-118. Zbl0256.10020MR360481
  6. [6] P. Bundschuh: Zur Simultanen Approximation von β 0, ..., βn-1, und Πn-1v=0 αβ vv durch algebraische Zahlen. J. reine und angew. Math.278-279 (1975) 99-117. Zbl0311.10034
  7. [7] P.L. Cijsouw: Transcendence measures of certain numbers whose transcendency was proved by A. Baker. Compositio Math.28 (1974) 179-194. Zbl0284.10014MR347745
  8. [8] P. Franklin: A new class of transcendental numbers. Trans. Amer. Math. Soc.42 (1937) 155-182. Zbl0017.15205MR1501918JFM63.0155.02
  9. [9] F. Meyer: Transcendence of exponential products with "nearly algebraic" exponents (to appear). 
  10. [10] G. Ricci: Sul settimo problema di Hilbert. Ann. Pisa (2) 4 (1935) 341-372. JFM61.1085.01
  11. [11] TH. Schneider: Einführung in die transzendenten Zahlen. Berlin-Göttingen-Heidelberg, Springer-Verlag, 1957. Zbl0077.04703MR86842
  12. [12] A.A. Smelev: A. O.Gelfond's method in the theory of transcendental numbers. Mat. Zam.10 (1971) 415-426 (English translation: Math. Notes10 (1971) 672-678). Zbl0254.10028MR297714
  13. [13] R. Tijdeman: On the equation of Catalan. Acta Arith.29 (1976) 197-209. Zbl0286.10013MR404137
  14. [14] M. Waldschmidt: Nombres transcendants. Lecture notes in Math.402, Springer-Verlag, 1974. Zbl0302.10030MR360483
  15. [15] R. Wallisser: Über Produkte transzendenter Zahlen. J. reine und angew. Math.258 (1973) 62-78. Zbl0257.10014MR319908

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.