Some notes on Markuševič bases in weakly compactly generated Banach spaces

K. John; V. Zizler

Compositio Mathematica (1977)

  • Volume: 35, Issue: 2, page 113-123
  • ISSN: 0010-437X

How to cite


John, K., and Zizler, V.. "Some notes on Markuševič bases in weakly compactly generated Banach spaces." Compositio Mathematica 35.2 (1977): 113-123. <>.

author = {John, K., Zizler, V.},
journal = {Compositio Mathematica},
language = {eng},
number = {2},
pages = {113-123},
publisher = {Noordhoff International Publishing},
title = {Some notes on Markuševič bases in weakly compactly generated Banach spaces},
url = {},
volume = {35},
year = {1977},

AU - John, K.
AU - Zizler, V.
TI - Some notes on Markuševič bases in weakly compactly generated Banach spaces
JO - Compositio Mathematica
PY - 1977
PB - Noordhoff International Publishing
VL - 35
IS - 2
SP - 113
EP - 123
LA - eng
UR -
ER -


  1. [1] D. Amir and J. Lindenstrauss: The structure of weakly compact sets in Banach spaces. Ann. of Math.88 (1968) 35-46. Zbl0164.14903MR228983
  2. [2] E. Asplund: Averaged norms. Israel J. Math.5 (1967) 227-233. Zbl0153.44301MR222610
  3. [3] E. Asplund: Topics in the theory of convex functions, Theory applications of monotone operators. Proceedings of a NATO Advanced Study Institute held in Venice, Italy, June 17-30, 1968. Zbl0188.35601MR271281
  4. [4] M.M. Day: Normed linear spaces. Springer, Berlin, 1958. Zbl0082.10603MR94675
  5. [5] J.A. Dyer: Generalized Markuševič bases. Israel J. Math.7 (1969) 51-59. Zbl0175.13301MR259564
  6. [6] V.I. Gurarij and M.I. Kadec: On minimal systems and quasicomplements in Banach spaces. Dokl. Acad. Nauk145 (1962) 256-258. Zbl0135.34601MR149238
  7. [7] K. John and V. Zizler: Projections in dual weakly compactly generated Banach spaces. Studia Math.49 (1973) 41-50. Zbl0247.46029MR336295
  8. [8] K. John and V. Zizler: Smoothness and its equivalents in the class of weakly compactly generated Banach spaces. J. Functional Analysis15 (1974) 1-11. Zbl0272.46012MR417759
  9. [9] K. John and V. Zizler: Some remarks on non-separable Banach spaces with Markuševič basis. Comment. Math. Univ. Carolinae15 (1974) 679-691. Zbl0291.46010MR372589
  10. [10] K. John and V. Zizler: Weak compact generating in duality. Studia Math., 55 (1976) 1-20. Zbl0325.46026MR405071
  11. [11] W.B. Johnson: Markuševič bases and duality theory. Trans. Amer. Math. Soc.149 (1970) 171-177. Zbl0194.43403MR261312
  12. [12] M.I. Kadec: O slaboj i silnoj schodimosti. Dokl. Akad. Nauk SSSR122 (1958) 13-16. Zbl0086.09204
  13. [13] V.L. Klee: Mappings into normed linear spaces. Fundamenta Math.49 (1960) 25-34. Zbl0117.08303MR126690
  14. [14] J. Lindenstrauss: Weakly compact sets—their topological properties and the Banach spaces they generate. Symposium on Infinite Dim. Topology (Edited by R. D. Anderson) Annals of Math. Studies69. Zbl0232.46019
  15. [15] V.D. Milman: The geometric theory of Banach spacesI, II. Uspechi Matem. Nauk25 (1970) 113-174;26 (1971) 74-149. Zbl0229.46017MR280985
  16. [16] J.J. Moreau: Fonctionnelles convexes. Seminaire sur les equations aux dérivées partielles. Collége de France1966-1967. MR390443
  17. [17] H.P. Rosenthal: The heridity problem for weakly compactly generated Banach spaces. Compositio Math.28 (1974) 83-111. Zbl0298.46013MR417762
  18. [18] H. Torunczyk: Smooth partitions of unity of some nonseparable Banach spaces. Studia Math.46 (1973) 43-51. Zbl0251.46022MR339255
  19. [19] S. Trojanski: On locally uniformly convex and differentiable norms in certain nonseparable Banach spaces. Studia Math.37 (1971) 173-180. Zbl0214.12701
  20. [20] S. Trojanski: On equivalent norms and minimal systems in nonseparable Banach spaces. Studia Math.43 (1972) 125-138. Zbl0255.46012MR324382

NotesEmbed ?


You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.


Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.