Approximations diophantiennes p -adiques sur les courbes elliptiques admettant une multiplication complexe

Daniel Bertrand

Compositio Mathematica (1978)

  • Volume: 37, Issue: 1, page 21-50
  • ISSN: 0010-437X

How to cite

top

Bertrand, Daniel. "Approximations diophantiennes $p$-adiques sur les courbes elliptiques admettant une multiplication complexe." Compositio Mathematica 37.1 (1978): 21-50. <http://eudml.org/doc/89373>.

@article{Bertrand1978,
author = {Bertrand, Daniel},
journal = {Compositio Mathematica},
language = {fre},
number = {1},
pages = {21-50},
publisher = {Sijthoff et Noordhoff International Publishers},
title = {Approximations diophantiennes $p$-adiques sur les courbes elliptiques admettant une multiplication complexe},
url = {http://eudml.org/doc/89373},
volume = {37},
year = {1978},
}

TY - JOUR
AU - Bertrand, Daniel
TI - Approximations diophantiennes $p$-adiques sur les courbes elliptiques admettant une multiplication complexe
JO - Compositio Mathematica
PY - 1978
PB - Sijthoff et Noordhoff International Publishers
VL - 37
IS - 1
SP - 21
EP - 50
LA - fre
UR - http://eudml.org/doc/89373
ER -

References

top
  1. [1] Y. Amice: Les nombres p-adiques. P.U.F., collection SUP, Paris, (1975). Zbl0313.12104MR447195
  2. [2] A. Baker: Transcendental number theory. Cambridge University Press, Cambridge (1975). Zbl0297.10013MR422171
  3. [3] D. Bertrand: Lemmes de Schwarz et lemmes d'approximations dans les domaines ultramétriques. C.R. Conf. Luminy, Juin 1976. Groupe d'étude d'analyse ultramétrique Amice-Robba, Secr. Math. Paris (1976), n° J8. 
  4. [4] D. Bertrand: Sous groupes à un paramètre p-adique de variétés de groupes. Inventiones Math.40 (1977) 171-193. Zbl0358.10016MR444581
  5. [5] J.W.S. Cassels: Diophantine equations with special reference to elliptic curves (survey article). J. London Math. Soc.41 (1966) 193-291. Zbl0138.27002MR199150
  6. [6] J. Coates et S. Lang: Diophantine approximations on abelian varieties with complex multiplications. Inventiones Math.34 (1976) 129-133. Zbl0342.10018MR414498
  7. [7] S. Kotov: Die arithmetische Struktur der rationalen Punkte auf Kurven vom Geschlecht Eins. Acta Arith. (à paraître). Zbl0422.14012MR547670
  8. [8] S. Lang: Diophantine approximations on toruses. Amer. J. Math.86 (1964) 521-533. Zbl0142.29601MR164929
  9. [9] S. Lang: Elliptic curves; diophantine analysis. (Livre à paraître). Zbl0388.10001
  10. [10] K. Mahler: Über die rationalen Punkte auf Kurven vom Geschlecht Eins. J. r. ang. Math., 170 (1934) 168-178. Zbl0008.20002JFM60.0159.03
  11. [11] D.W. Masser: Elliptic functions and transcendence. Lecture Notes in Math. 437, Springer, Berlin-Heidelberg-New York (1975). Zbl0312.10023MR379391
  12. [12] K. Ribet: Dividing rational points on abelian varieties of C.M. type. Compositio Math., 33 (1976) 69-74. Zbl0331.14020MR424823
  13. [13] J. Tate: The arithmetic of elliptic curves. Inventiones Math., 23 (1974) 179-206. Zbl0296.14018MR419359
  14. [14] A. Weil: Sur les fonctions elliptiques p-adiques, Note aux C.R. Acad. Sc. Paris, 203 (1936) 22-24. Zbl0014.20201JFM62.0119.03

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.