Linking the conjectures of Artin-Tate and Birch-Swinnerton-Dyer

W. J. Gordon

Compositio Mathematica (1979)

  • Volume: 38, Issue: 2, page 163-199
  • ISSN: 0010-437X

How to cite

top

Gordon, W. J.. "Linking the conjectures of Artin-Tate and Birch-Swinnerton-Dyer." Compositio Mathematica 38.2 (1979): 163-199. <http://eudml.org/doc/89400>.

@article{Gordon1979,
author = {Gordon, W. J.},
journal = {Compositio Mathematica},
keywords = {Artin-Tate conjecture; Birch-Swinnerton-Dyer conjecture},
language = {eng},
number = {2},
pages = {163-199},
publisher = {Sijthoff et Noordhoff International Publishers},
title = {Linking the conjectures of Artin-Tate and Birch-Swinnerton-Dyer},
url = {http://eudml.org/doc/89400},
volume = {38},
year = {1979},
}

TY - JOUR
AU - Gordon, W. J.
TI - Linking the conjectures of Artin-Tate and Birch-Swinnerton-Dyer
JO - Compositio Mathematica
PY - 1979
PB - Sijthoff et Noordhoff International Publishers
VL - 38
IS - 2
SP - 163
EP - 199
LA - eng
KW - Artin-Tate conjecture; Birch-Swinnerton-Dyer conjecture
UR - http://eudml.org/doc/89400
ER -

References

top
  1. [1] M. Artin: Grothendieck topologies, notes on a seminar. Harvard University Press, Cambridge, Mass. (1962). Zbl0208.48701
  2. [2] M. Artin: Supersingular K3 surfaces, Ann. Sci. E.N.S., 4e série, 7 (1974) 4. Zbl0322.14014MR371899
  3. [3] M. Artin and H.P.F. Swinnerton-Dyer: The Shafarevich-Tate conjecture for pencils of elliptic curves on K3 surfaces, Inventiones Math., 20 (1973) 249-266. Zbl0289.14003MR417182
  4. [4] M. Artin and G. Winters: Degenerate fibers and stable reduction of curves, Topology10 (1974) 373-383. Zbl0196.24403MR476756
  5. [5] P. Deligne: La conjecture de Weil I, IHES Publ. Math., 43 (1974) 273-307. Zbl0287.14001MR340258
  6. [6] P. Deligne and D. Mumford: The irreducibility of the space of curves of a given genus, IHES Publ. Math., 36 (1969) 75-110. Zbl0181.48803MR262240
  7. [7] Éléments de géométrie algébrique, IHES Publ. Math., 4, 7, 11,... Zbl0203.23301
  8. [8] A. Grothendieck: Formule de Lefschetz et rationalite des fonctions L, Sém. Bourbaki279 (1964). Zbl0199.24802
  9. [9] A. Grothendieck: Le groupe de Brauer II, III. Dix exposés sur la cohomologie des schémas. North-Holland, Amsterdam (1968). 
  10. [10] A. Grothendieck: Les schémas de Picard, Sém. Bourbaki232 (1962). Zbl0238.14014
  11. [11] S. Lang: Abelian varieties. Interscience, New York (1959). Zbl0098.13201MR106225
  12. [12] S. Lang: Diophantine geometry. Interscience, New York (1962). Zbl0115.38701MR142550
  13. [13] S. Lang: Les formes bilinéaires de Néron et Tate, Sém. Bourbaki274 (1964). Zbl0138.42101MR176984
  14. [ 14] J. Lipman: Rational singularities... , IHES Publ. Math., 36 (1969) 195-280. Zbl0181.48903MR276239
  15. [15] J.S. Milne: The arithmetic of abelian varieties, Inventiones Math., 17 (1972) 177-190. Zbl0249.14012MR330174
  16. [16] J.S. Milne: On a conjecture of Artin and Tate, Annals of Math., 102 (1975) 517-533. Zbl0343.14005MR414558
  17. [17] J.S. Milne: The Brauer group of a rational surface, Inventiones Math., 11 (1970) 304-307. Zbl0205.25101MR285538
  18. [18] J.S. Milne: The Tate-Šafarevič group of a constant abelian variety, Inventiones Math., 6 (1968) 91-105. Zbl0159.22402MR244264
  19. [19] D. Mumford: Lectures on curves on an algebraic surface. Princeton University Press, Princeton (1966). Zbl0187.42701MR209285
  20. [20] A. Néron: Modèles minimaux des variétés abéliennes sur les corps locaux et globaux, IHES Publ. Math., 21 (1964). Zbl0132.41403MR179172
  21. [21] A. Néron: Problèmes arithmétiques et géométriques rattachés a la notion de rang d'une courbe algébrique dans un corps, Bull. Soc. Math. France, 80 (1952) 101-166. Zbl0049.30803MR56951
  22. [22] M. Raynaud: Spécialization du foncteur de Picard, IHES Publ. Math., 38 (1970) 27-76. Zbl0207.51602
  23. [23] SGA 4-Cohomologie étale des schémas. Lecture Notes in Mathematics269, 270, 305. Springer, Berlin etc. (1973). 
  24. [24] SGA 5-Cohomologie l-adic et fonctions L. Lecture Notes in Mathematics589. Springer, Berlin etc. (1977). Zbl0345.00011
  25. [25] J.T. Tate: On the conjecture of Birch and Swinnerton-Dyer and a geometric analogue, Sém. Bourbaki352 (1%8). Zbl0199.55604
  26. [26] J.T. Tate: "Algorithm for determining the type of a singular fiber in an elliptic curve." Modular functions of one variable IV. Lecture Notes in Mathematics476. Springer, Berlin etc. (1975). 
  27. [27] A. Weil: Adeles and algebraic groups. Institute for Advanced Study, Princeton (1961). Zbl0118.15801

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.