Hyperspaces of noncompact metric spaces

D. W. Curtis

Compositio Mathematica (1980)

  • Volume: 40, Issue: 2, page 139-152
  • ISSN: 0010-437X

How to cite

top

Curtis, D. W.. "Hyperspaces of noncompact metric spaces." Compositio Mathematica 40.2 (1980): 139-152. <http://eudml.org/doc/89430>.

@article{Curtis1980,
author = {Curtis, D. W.},
journal = {Compositio Mathematica},
keywords = {absolute retract; Hilbert cube; Peano compactification; Hilbert space},
language = {eng},
number = {2},
pages = {139-152},
publisher = {Sijthoff et Noordhoff International Publishers},
title = {Hyperspaces of noncompact metric spaces},
url = {http://eudml.org/doc/89430},
volume = {40},
year = {1980},
}

TY - JOUR
AU - Curtis, D. W.
TI - Hyperspaces of noncompact metric spaces
JO - Compositio Mathematica
PY - 1980
PB - Sijthoff et Noordhoff International Publishers
VL - 40
IS - 2
SP - 139
EP - 152
LA - eng
KW - absolute retract; Hilbert cube; Peano compactification; Hilbert space
UR - http://eudml.org/doc/89430
ER -

References

top
  1. [1] R.D. Anderson: Hilbert space is homeomorphic to the countable infinite product of lines. Bull. Amer. Math. Soc.72 (1966) 515-519. Zbl0137.09703MR190888
  2. [2] R.D. Anderson: On sigma-compact subsets of infinite-dimensional spaces, (unpublished manuscript). 
  3. [3] C.R. Borges: Notices Amer. Math. Soc.22 (1975) 75T-G118 and 23 (1976), 731-54-10. 
  4. [4] D.W. Curtis: Growth hyperspaces of Peano continua. Trans. Amer. Math. Soc.238 (1978) 271-283. Zbl0344.54009MR482919
  5. [5] D.W. Curtis: Hyperspaces homeomorphic to Hilbert space. Proc. Amer. Math. Soc.75 (1979) 126-130. Zbl0378.54004MR529228
  6. [6] D.W. Curtis and R.M. Schori: 2X and C(X) are homeomorphic to the Hilbert cube. Bull. Amer. Math. Soc.80 (1974) 927-931. Zbl0302.54011MR353235
  7. [7] D.W. Curtis and R.M. Schori: Hyperspaces which characterize simple homotopy type. Gen. Top. and its Applications6 (1976) 153-165. Zbl0328.54003MR394684
  8. [8] D.W. Curtis and R.M. Schori: Hyperspaces of Peano continua are Hilbert cubes. Fund. Math.101 (1978) 19-38. Zbl0409.54044MR512241
  9. [9] J. Dugundji: Absolute neighborhood retracts and local connectedness in arbitrary metric spaces. Comp. Math.13 (1958) 229-246. Zbl0089.38903MR113217
  10. [10] J.G. Hocking and G.S. Young: Topology. Addison-Wesley, 1961, Reading, Mass. Zbl0135.22701MR125557
  11. [11] J.L. Kelley: Hyperspaces of a continuum. Trans. Amer. Math. Soc.52 (1942) 22-36. Zbl0061.40107MR6505
  12. [12] N. Kroonenberg: Pseudo-interiors of hyperspaces. Comp. Math.32 (1976) 113-131. Zbl0336.54008MR413109
  13. [13] U. Tasmetov: On the connectedness of hyperspacesSoviet Math. Dokl.15 (1974) 502-504. Zbl0297.54009MR341375
  14. [14] H. Torunczyk: Characterizing Hilbert space topology (preprint). Zbl0468.57015MR611763
  15. [15] M. Wojdyslawski: Retractes absolus et hyperespaces des continus. Fund. Math.32 (1939) 184-192. Zbl0021.36001JFM65.0880.03

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.