Pseudo-interiors of hyperspaces

Nelly Kroonenberg

Compositio Mathematica (1976)

  • Volume: 32, Issue: 2, page 113-131
  • ISSN: 0010-437X

How to cite

top

Kroonenberg, Nelly. "Pseudo-interiors of hyperspaces." Compositio Mathematica 32.2 (1976): 113-131. <http://eudml.org/doc/89284>.

@article{Kroonenberg1976,
author = {Kroonenberg, Nelly},
journal = {Compositio Mathematica},
language = {eng},
number = {2},
pages = {113-131},
publisher = {Noordhoff International Publishing},
title = {Pseudo-interiors of hyperspaces},
url = {http://eudml.org/doc/89284},
volume = {32},
year = {1976},
}

TY - JOUR
AU - Kroonenberg, Nelly
TI - Pseudo-interiors of hyperspaces
JO - Compositio Mathematica
PY - 1976
PB - Noordhoff International Publishing
VL - 32
IS - 2
SP - 113
EP - 131
LA - eng
UR - http://eudml.org/doc/89284
ER -

References

top
  1. [1] R.D. Anderson: Hilbert space is homeomorphic to the countable infinite product of lines. Bull. Amer. Math. Soc.72 (1966) 515-519. Zbl0137.09703MR190888
  2. [2] R.D. Anderson: On topological infinite deficiency. Mich. Math. J.14 (1967) 365-383. Zbl0148.37202MR214041
  3. [3] R.D. Anderson: On sigma-compact subsets of infinite-dimensional spaces. Trans. Amer. Math. Soc. (to appear). 
  4. [4] R.D. Anderson, T.A. Chapman: Extending homeomorphisms to Hilbert cube manifolds. Pacific J. of Math.38 (1971) 281-293. Zbl0227.57004MR319204
  5. [5] W. Barit: Small extensions of small homeomorphisms. Notices Amer. Math. Soc.16 (1969) 295. 
  6. [6] C. Bessaga, A. Pelczyński: Estimated extension theorem, homogeneous collections and skeletons and their application to topological classification of linear metric spaces. Fund. Math.69 (1970) 153-190. Zbl0204.12801MR273347
  7. [7] T.A. Chapman: All Hilbert cube manifolds are triangulable. preprint. MR286138
  8. [8] D.W. Curtis, R.M. Schori: Hyperspaces of Peano continua are Hilbert cubes (in preparation). Zbl0409.54044
  9. [9] Ross Geoghegan, R. Richard Summerhill: Pseudo-boundaries and pseudo-interiors in Euclidean spaces and topological manifolds. Trans. Amer. Math. Soc. (to appear). Zbl0288.57001MR356061
  10. [10] D.W. Henderson: Infinite-dimensional manifolds are open subsets of Hilbert space. Bull. Amer. Math. Soc.75 (1969) 759-762. Zbl0179.29101MR247634
  11. [11] D.W. Henderson: Open subsets of Hilbert space. Comp. Math.21 (1969) 312-318. Zbl0179.52102MR251748
  12. [12] D.W. Henderson, R. Schori: Topological classification of infinite-dimensional manifolds by homotopy type. Bull. Amer. Math. Soc.76 (1969) 121-124. Zbl0194.55602MR251749
  13. [13] D.W. Henderson, J.E. West: Triangulated infinite-dimensional manifolds. Bull. Amer. Math. Soc.76 (1970) 655-660. Zbl0203.25806MR258067
  14. [14] R. Schori, J.E. West: 2I is homeomorphic to the Hilbert cube. Bull. Amer. Math. Soc.78 (1972) 402-406. Zbl0242.54006MR309119

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.