The intersection of distinct Galois subrings is not necessarily Galois
Compositio Mathematica (1980)
- Volume: 40, Issue: 3, page 283-286
- ISSN: 0010-437X
Access Full Article
topHow to cite
topAl-Khamees, Yousif. "The intersection of distinct Galois subrings is not necessarily Galois." Compositio Mathematica 40.3 (1980): 283-286. <http://eudml.org/doc/89437>.
@article{Al1980,
author = {Al-Khamees, Yousif},
journal = {Compositio Mathematica},
keywords = {Galois Subrings},
language = {eng},
number = {3},
pages = {283-286},
publisher = {Sijthoff et Noordhoff International Publishers},
title = {The intersection of distinct Galois subrings is not necessarily Galois},
url = {http://eudml.org/doc/89437},
volume = {40},
year = {1980},
}
TY - JOUR
AU - Al-Khamees, Yousif
TI - The intersection of distinct Galois subrings is not necessarily Galois
JO - Compositio Mathematica
PY - 1980
PB - Sijthoff et Noordhoff International Publishers
VL - 40
IS - 3
SP - 283
EP - 286
LA - eng
KW - Galois Subrings
UR - http://eudml.org/doc/89437
ER -
References
top- [1] M.F. Atiyah and I.G. Macdonald: Introduction to commutative Algebra. Addison-Wesley Publ. (1969). Zbl0175.03601MR242802
- [2] W.E. Clark: A coefficient ring for finite non-commutative rings, Proc. Amer. Math. Soc.33, No. 1 (1972) 25-27. Zbl0232.16018MR294411
- [3] B. Corbas: Finite rings in which the product of any two zero divisors is zero. Archiv der Math., XXI (1970) 466-469. Zbl0216.33501MR285569
- [4] W. Krull: Algebraische theorie der ringe 11. Math. Ann.91 (1924) 1-46. Zbl50.0072.01MR1512178JFM50.0072.01
- [5] R.G. Macdonald, Finite rings with identity, Dekker, New York (1974). Zbl0294.16012
- [6] R. Raghavendran: Finite Associative rings, Compositio Math.21, 2 (1969) 195-229. Zbl0179.33602MR246905
- [7] R. Wilson: On the structure of finite rings, Compositio Math.26, 1 (1973) 79-93. Zbl0248.16009MR320065
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.