# Finite associative rings

Compositio Mathematica (1969)

- Volume: 21, Issue: 2, page 195-229
- ISSN: 0010-437X

## Access Full Article

top## How to cite

topRaghavendran, R.. "Finite associative rings." Compositio Mathematica 21.2 (1969): 195-229. <http://eudml.org/doc/89012>.

@article{Raghavendran1969,

author = {Raghavendran, R.},

journal = {Compositio Mathematica},

keywords = {associative rings},

language = {eng},

number = {2},

pages = {195-229},

publisher = {Wolters-Noordhoff Publishing},

title = {Finite associative rings},

url = {http://eudml.org/doc/89012},

volume = {21},

year = {1969},

}

TY - JOUR

AU - Raghavendran, R.

TI - Finite associative rings

JO - Compositio Mathematica

PY - 1969

PB - Wolters-Noordhoff Publishing

VL - 21

IS - 2

SP - 195

EP - 229

LA - eng

KW - associative rings

UR - http://eudml.org/doc/89012

ER -

## References

top- N. Ganesan [1] Properties of Rings with a Finite Number of Zero Divisors, Math. Annalen157, (1964) 215-218. Zbl0135.07704MR169870
- N. Ganesan [2] Properties of Rings with a Finite Number of Zero Divisors II, Math. Annalen161, (1965) 241-246. Zbl0163.28301MR186694
- N. Jacobson [3] Lectures in Abstract Algebra vol. III, Van Nostrand Company, Princeton-London- Toronto (1964). Zbl0124.27002MR172871
- K. Koh [4] On "Properties of Rings with a Finite Number of Zero Divisors", Math. Annalen171, (1967) 79-80. Zbl0153.06201MR207753
- H.J. Zassenhaus [5] A group-theoretic proof of a theorem of Wedderburn, Proc. Glasgow Math. Association vol. 1, (1952-53) 53-63. Zbl0049.16002MR52407

## Citations in EuDML Documents

top- Robert S. Wilson, On the structure of finite rings
- M. J. Nikmehr, B. Soleymanzadeh, The prime ideals intersection graph of a ring
- Yousif Al-Khamees, The intersection of distinct Galois subrings is not necessarily Galois
- Jizhu Nan, Yangjiang Wei, Gaohua Tang, The fundamental constituents of iteration digraphs of finite commutative rings
- Mahmood Behboodi, Reza Beyranvand, Amir Hashemi, Hossein Khabazian, Classification of finite rings: theory and algorithm

## NotesEmbed ?

topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.