Tamagawa number of reductive algebraic groups

K. F. Lai

Compositio Mathematica (1980)

  • Volume: 41, Issue: 2, page 153-188
  • ISSN: 0010-437X

How to cite

top

Lai, K. F.. "Tamagawa number of reductive algebraic groups." Compositio Mathematica 41.2 (1980): 153-188. <http://eudml.org/doc/89454>.

@article{Lai1980,
author = {Lai, K. F.},
journal = {Compositio Mathematica},
keywords = {reductive algebraic groups; Tamagawa numbers; split semisimple groups; reductive quasi-split algebraic group; maximal torus; Chevalley groups; simply-connected connected semi-simple quasi-split group},
language = {eng},
number = {2},
pages = {153-188},
publisher = {Sijthoff et Noordhoff International Publishers},
title = {Tamagawa number of reductive algebraic groups},
url = {http://eudml.org/doc/89454},
volume = {41},
year = {1980},
}

TY - JOUR
AU - Lai, K. F.
TI - Tamagawa number of reductive algebraic groups
JO - Compositio Mathematica
PY - 1980
PB - Sijthoff et Noordhoff International Publishers
VL - 41
IS - 2
SP - 153
EP - 188
LA - eng
KW - reductive algebraic groups; Tamagawa numbers; split semisimple groups; reductive quasi-split algebraic group; maximal torus; Chevalley groups; simply-connected connected semi-simple quasi-split group
UR - http://eudml.org/doc/89454
ER -

References

top
  1. [1] Bhanu-Murti, T.S.: Plancherel's measure for the factor space SL(n, R)/SO(n, R). Soviet Math. Dokl1 (1960) 860. Zbl0097.10903MR125176
  2. [2] Borel, A.: Linear Algebraic Groups, New York, Benjamin, 1969. Zbl0186.33201MR251042
  3. [3] Borel, A.: Automorphic L-function (Preprint, 1977). 
  4. [4] Bruhat, F., Tits, J.: Groupes reductifs sur un corps local I, Publ. Math. IHES (1973). Zbl0254.14017MR327923
  5. [5] Carter, R.W.: Simple groups of Lie type, New York, Wiley, 1972. Zbl0723.20006MR407163
  6. [6] Gindikin, S.G. and Karpelevic, F.I.: Plancherel measure for Riemannian symmetric spaces, Soviet Math. Dokl3 (1962) 962-5. Zbl0156.03201
  7. [7] Harish-Chandra,: AutomorphicForms on Semisimple Lie Groups, Lecture Notes, Springer-Verlag, New York, 1968. Zbl0186.04702MR232893
  8. [8] Humphreys, J.: Linear Algebraic Groups, Springer, 1975. Zbl0325.20039MR396773
  9. [9] Jacobson, N.: Lie Algebras, Interscience, New York, 1962. Zbl0121.27504MR143793
  10. [10] Kneser, M.: Semi-simple algebraic groups. Proc. Conf. Alg. Number Theory, London Math. Soc., 1967, 250-264. MR217077
  11. [11] Kostant, B.: The principle three dimensional subgroup, Am. J. Math., 81 (1959) 973-1032. Zbl0099.25603MR114875
  12. [12] Lai, K.F.: On the Tamagawa number of quasi-split groups, Bull AMS, 82 (1976) 300-302. Zbl0361.20046MR401656
  13. [13] Langlands, R.P.: Eisenstein Series, Proc. Symposia Pure Math.IX (1966), 235-252. Zbl0204.09603MR249539
  14. [14] Langlands, R.P.: On the functional equations satisfied by Eisenstein Series, Springer Lecture Notes544 (1976). Zbl0332.10018MR579181
  15. [15] Langlands, R.P.: The Volume of the Fundamental Domain for Some Arithmetical Subgroups of Chevalley Groups, Proc. Sym. Pure Math., 9, AMS, Providence, 1966, 143-148. Zbl0218.20041MR213362
  16. [16] Langlands, R.P.: Problems in the theory of automorphic forms, Yale University, 1969. Zbl0225.14023
  17. [17] Ono, T.: On Tamagawa numbers, Proc. Sym. Pure Math., 9, AMS, Providence, 1966, 122-132. Zbl0223.20050MR209290
  18. [18] Rapoport, M.: Determination du nombre de Tamagawa (Preprint, 1976). 
  19. [19] Schiffmann, G.: Integrales d'entrelacement, Bull. Soc. math. France99 (1971) 3-72. Zbl0223.22017MR311838
  20. [20] Serre, J.P.: Cohomologie Galoisienne, Cours au College de France, 1963. Zbl0136.02801MR180551
  21. [21] Steinberg, R.: Variations on a theme of Chevalley, Pacific J. Math., 9 (1959) 875-891. Zbl0092.02505MR109191
  22. [22] Tits, J.: Classification of algebraic semi-simple algebraic groups, Proc. Sym. Pure Math., 9, AMS, Providence, 1966, 33-62. Zbl0238.20052
  23. [23] Weil, A.: Adeles and algebraic groups, IAS, Princeton, 1961. Zbl0118.15801

NotesEmbed ?

top

You must be logged in to post comments.