Appendix on the discriminant quotient formula for global field

Moshe Jarden; Gopal Prasad

Publications Mathématiques de l'IHÉS (1989)

  • Volume: 69, page 115-117
  • ISSN: 0073-8301

How to cite

top

Jarden, Moshe, and Prasad, Gopal. "Appendix on the discriminant quotient formula for global field." Publications Mathématiques de l'IHÉS 69 (1989): 115-117. <http://eudml.org/doc/104048>.

@article{Jarden1989,
author = {Jarden, Moshe, Prasad, Gopal},
journal = {Publications Mathématiques de l'IHÉS},
keywords = {global field; semi-simple algebraic group; volume; S-arithmetic subgroup; reductive groups; bound for class numbers},
language = {eng},
pages = {115-117},
publisher = {Institut des Hautes Études Scientifiques},
title = {Appendix on the discriminant quotient formula for global field},
url = {http://eudml.org/doc/104048},
volume = {69},
year = {1989},
}

TY - JOUR
AU - Jarden, Moshe
AU - Prasad, Gopal
TI - Appendix on the discriminant quotient formula for global field
JO - Publications Mathématiques de l'IHÉS
PY - 1989
PB - Institut des Hautes Études Scientifiques
VL - 69
SP - 115
EP - 117
LA - eng
KW - global field; semi-simple algebraic group; volume; S-arithmetic subgroup; reductive groups; bound for class numbers
UR - http://eudml.org/doc/104048
ER -

References

top
  1. [1] A. BOREL, Some finiteness properties of adele groups over number fields, Publ. Math. I.H.E.S., 16 (1963), 5-30. Zbl0135.08902MR34 #2578
  2. [2] A. BOREL, Linear Algebraic groups, New York, W. A. Benjamin (1969). Zbl0186.33201MR40 #4273
  3. [3] A. BOREL and J. de SIEBENTHAL, Les sous-groupes fermés de rang maximum des groupes de Lie clos, Comment. Math. Helv., 23 (1949), 200-221. Zbl0034.30701MR11,326d
  4. [4] A. BOREL and G. PRASAD, Finiteness theorems for discrete subgroups of bounded covolume in semi-simple groups, Publ. Math. I.H.E.S., 69 (1989), 119-171. Zbl0707.11032MR91c:22021
  5. [5] N. BOURBAKI, Groupes et Algèbres de Lie, chapitres IV, V et VI, Paris, Hermann (1968). 
  6. [6] F. BRUHAT and J. TITS, Groupes réductifs sur un corps local, I, Publ. Math. I.H.E.S., 41 (1972), 5-251 ; II, ibid., 60 (1984), 5-184. Zbl0254.14017MR48 #6265
  7. [7] J. W. S. CASSELS, Global fields, in Algebraic number theory (ed. J. W. S. CASSELS and A. FRÖHLICH), London, Academic Press (1967), 42-84. MR36 #5106
  8. [8] C. CHEVALLEY, Introduction to the theory of algebraic functions of one variable, A.M.S. Math. Surveys, Number VI (1951). Zbl0045.32301MR13,64a
  9. [9] M. DEURING, Lectures on the theory of algebraic functions of one variable, Springer-Verlag Lecture Notes Math., 314 (1973). Zbl0249.14008MR49 #8970
  10. [10] A. FRÖHLICH, Local Fields, in Algebraic number theory (ed. J. W. S. CASSELS and A. FRÖHLICH), London, Academic Press (1967), 1-41. 
  11. [11] G. HARDER, Minkowskische Reduktionstheorie über Funktionenkörpern, Inventiones Math., 7 (1969), 33-54. Zbl0242.20046MR44 #1667
  12. [12] G. HARDER, A Gauss-Bonnet formula for discrete arithmetically defined groups, Ann. Sci. École Norm. Sup., Paris, 4 (1971), 409-455. Zbl0232.20088MR46 #8255
  13. [13] G. HARDER, Chevalley groups over function fields and automorphic forms, Ann. Math., 100 (1974), 249-306. Zbl0309.14041MR58 #27799
  14. [14] H. HASSE, Number theory, Berlin, Springer-Verlag (1980). Zbl0423.12002MR81c:12001b
  15. [15] H. JACQUET and R. P. LANGLANDS, Automorphic forms on GL(2), Springer-Verlag Lecture Notes Math., 114 (1970). Zbl0236.12010MR53 #5481
  16. [16] M. KNESER, Hasse principle for H1 of simply connected groups, Proc. A.M.S. Symp. Pure Math., 9 (1966), 159-163. Zbl0259.20041MR36 #3788
  17. [17] R. KOTTWITZ, Tamagawa numbers, Ann. Math., 127 (1988), 629-646. Zbl0678.22012MR90e:11075
  18. [18] K. F. LAI, Tamagawa number of reductive algebraic groups, Compos. Math., 41 (1980), 153-188. Zbl0416.20035MR82d:20043
  19. [19] R. P. LANGLANDS, The volume of the fundamental domain for some arithmetical subgroups of Chevalley groups, Proc. A.M.S. Symp. Pure Math., 9 (1966), 143-148. Zbl0218.20041MR35 #4226
  20. [20] I. G. MACDONALD, The volume of a compact Lie group, Inventiones Math., 56 (1980), 93-95. Zbl0426.22009MR81h:22018
  21. [21] G. A. MARGULIS, Cobounded subgroups in algebraic groups over local fields, Functional Anal. Appl., 11 (1977), 45-57. Zbl0412.22007MR56 #495
  22. [22] J. G. M. MARS, Les nombres de Tamagawa de certains groupes exceptionnels, Bull. Soc. Math. France, 94 (1966), 97-140. Zbl0146.04601MR35 #4227
  23. [23] J. G. M. MARS, The Tamagawa number of 2An, Ann. Math., 89 (1969), 557-574. Zbl0193.21502MR41 #8427
  24. [24] J. OESTERLÉ, Nombres de Tamagawa, Inventiones Math., 78 (1984), 13-88. Zbl0542.20024MR86i:11016
  25. [25] T. ONO, On algebraic groups and discontinuous groups, Nagoya Math. J., 27 (1966), 279-322. Zbl0166.29802MR33 #7342
  26. [26] T. ONO, On Tamagawa numbers, Proc. A.M.S. Symp. Pure Math., 9 (1966), 122-132. Zbl0223.20050MR35 #191
  27. [27] G. PRASAD, Strong approximation, Ann. Math., 105 (1977), 553-572. Zbl0348.22006MR56 #2921
  28. [28] G. PRASAD and M. S. RAGHUNATHAN, Topological central extensions of semi-simple groups over local fields, Ann. Math., 119 (1984), 143-268. Zbl0552.20025MR86e:20051a
  29. [29] J.-P. SERRE, Lie algebras and Lie groups, New York, W. A. Benjamin (1965). Zbl0132.27803MR36 #1582
  30. [30] T. A. SPRINGER, Reductive groups, Proc. A.M.S. Symp. Pure Math., 33 (1979), Part I, 3-27. Zbl0416.20034MR80h:20062
  31. [31] R. STEINBERG, Regular elements of semi-simple algebraic groups, Publ. Math. I.H.E.S., 25 (1965), 49-80. Zbl0136.30002MR31 #4788
  32. [32] J. TITS, Classification of algebraic semi-simple groups, Proc. A.M.S. Symp. Pure Math., 9 (1966), 33-62. Zbl0238.20052MR37 #309
  33. [33] J. TITS, Reductive groups over local fields, Proc. A.M.S. Symp. Pure Math., 33 (1979), Part I, 29-69. Zbl0415.20035MR80h:20064
  34. [34] A. WEIL, Adèles and algebraic groups, Boston, Birkhäuser (1982). Zbl0493.14028MR83m:10032

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.