Appendix on the discriminant quotient formula for global field
Publications Mathématiques de l'IHÉS (1989)
- Volume: 69, page 115-117
- ISSN: 0073-8301
Access Full Article
topHow to cite
topJarden, Moshe, and Prasad, Gopal. "Appendix on the discriminant quotient formula for global field." Publications Mathématiques de l'IHÉS 69 (1989): 115-117. <http://eudml.org/doc/104048>.
@article{Jarden1989,
author = {Jarden, Moshe, Prasad, Gopal},
journal = {Publications Mathématiques de l'IHÉS},
keywords = {global field; semi-simple algebraic group; volume; S-arithmetic subgroup; reductive groups; bound for class numbers},
language = {eng},
pages = {115-117},
publisher = {Institut des Hautes Études Scientifiques},
title = {Appendix on the discriminant quotient formula for global field},
url = {http://eudml.org/doc/104048},
volume = {69},
year = {1989},
}
TY - JOUR
AU - Jarden, Moshe
AU - Prasad, Gopal
TI - Appendix on the discriminant quotient formula for global field
JO - Publications Mathématiques de l'IHÉS
PY - 1989
PB - Institut des Hautes Études Scientifiques
VL - 69
SP - 115
EP - 117
LA - eng
KW - global field; semi-simple algebraic group; volume; S-arithmetic subgroup; reductive groups; bound for class numbers
UR - http://eudml.org/doc/104048
ER -
References
top- [1] A. BOREL, Some finiteness properties of adele groups over number fields, Publ. Math. I.H.E.S., 16 (1963), 5-30. Zbl0135.08902MR34 #2578
- [2] A. BOREL, Linear Algebraic groups, New York, W. A. Benjamin (1969). Zbl0186.33201MR40 #4273
- [3] A. BOREL and J. de SIEBENTHAL, Les sous-groupes fermés de rang maximum des groupes de Lie clos, Comment. Math. Helv., 23 (1949), 200-221. Zbl0034.30701MR11,326d
- [4] A. BOREL and G. PRASAD, Finiteness theorems for discrete subgroups of bounded covolume in semi-simple groups, Publ. Math. I.H.E.S., 69 (1989), 119-171. Zbl0707.11032MR91c:22021
- [5] N. BOURBAKI, Groupes et Algèbres de Lie, chapitres IV, V et VI, Paris, Hermann (1968).
- [6] F. BRUHAT and J. TITS, Groupes réductifs sur un corps local, I, Publ. Math. I.H.E.S., 41 (1972), 5-251 ; II, ibid., 60 (1984), 5-184. Zbl0254.14017MR48 #6265
- [7] J. W. S. CASSELS, Global fields, in Algebraic number theory (ed. J. W. S. CASSELS and A. FRÖHLICH), London, Academic Press (1967), 42-84. MR36 #5106
- [8] C. CHEVALLEY, Introduction to the theory of algebraic functions of one variable, A.M.S. Math. Surveys, Number VI (1951). Zbl0045.32301MR13,64a
- [9] M. DEURING, Lectures on the theory of algebraic functions of one variable, Springer-Verlag Lecture Notes Math., 314 (1973). Zbl0249.14008MR49 #8970
- [10] A. FRÖHLICH, Local Fields, in Algebraic number theory (ed. J. W. S. CASSELS and A. FRÖHLICH), London, Academic Press (1967), 1-41.
- [11] G. HARDER, Minkowskische Reduktionstheorie über Funktionenkörpern, Inventiones Math., 7 (1969), 33-54. Zbl0242.20046MR44 #1667
- [12] G. HARDER, A Gauss-Bonnet formula for discrete arithmetically defined groups, Ann. Sci. École Norm. Sup., Paris, 4 (1971), 409-455. Zbl0232.20088MR46 #8255
- [13] G. HARDER, Chevalley groups over function fields and automorphic forms, Ann. Math., 100 (1974), 249-306. Zbl0309.14041MR58 #27799
- [14] H. HASSE, Number theory, Berlin, Springer-Verlag (1980). Zbl0423.12002MR81c:12001b
- [15] H. JACQUET and R. P. LANGLANDS, Automorphic forms on GL(2), Springer-Verlag Lecture Notes Math., 114 (1970). Zbl0236.12010MR53 #5481
- [16] M. KNESER, Hasse principle for H1 of simply connected groups, Proc. A.M.S. Symp. Pure Math., 9 (1966), 159-163. Zbl0259.20041MR36 #3788
- [17] R. KOTTWITZ, Tamagawa numbers, Ann. Math., 127 (1988), 629-646. Zbl0678.22012MR90e:11075
- [18] K. F. LAI, Tamagawa number of reductive algebraic groups, Compos. Math., 41 (1980), 153-188. Zbl0416.20035MR82d:20043
- [19] R. P. LANGLANDS, The volume of the fundamental domain for some arithmetical subgroups of Chevalley groups, Proc. A.M.S. Symp. Pure Math., 9 (1966), 143-148. Zbl0218.20041MR35 #4226
- [20] I. G. MACDONALD, The volume of a compact Lie group, Inventiones Math., 56 (1980), 93-95. Zbl0426.22009MR81h:22018
- [21] G. A. MARGULIS, Cobounded subgroups in algebraic groups over local fields, Functional Anal. Appl., 11 (1977), 45-57. Zbl0412.22007MR56 #495
- [22] J. G. M. MARS, Les nombres de Tamagawa de certains groupes exceptionnels, Bull. Soc. Math. France, 94 (1966), 97-140. Zbl0146.04601MR35 #4227
- [23] J. G. M. MARS, The Tamagawa number of 2An, Ann. Math., 89 (1969), 557-574. Zbl0193.21502MR41 #8427
- [24] J. OESTERLÉ, Nombres de Tamagawa, Inventiones Math., 78 (1984), 13-88. Zbl0542.20024MR86i:11016
- [25] T. ONO, On algebraic groups and discontinuous groups, Nagoya Math. J., 27 (1966), 279-322. Zbl0166.29802MR33 #7342
- [26] T. ONO, On Tamagawa numbers, Proc. A.M.S. Symp. Pure Math., 9 (1966), 122-132. Zbl0223.20050MR35 #191
- [27] G. PRASAD, Strong approximation, Ann. Math., 105 (1977), 553-572. Zbl0348.22006MR56 #2921
- [28] G. PRASAD and M. S. RAGHUNATHAN, Topological central extensions of semi-simple groups over local fields, Ann. Math., 119 (1984), 143-268. Zbl0552.20025MR86e:20051a
- [29] J.-P. SERRE, Lie algebras and Lie groups, New York, W. A. Benjamin (1965). Zbl0132.27803MR36 #1582
- [30] T. A. SPRINGER, Reductive groups, Proc. A.M.S. Symp. Pure Math., 33 (1979), Part I, 3-27. Zbl0416.20034MR80h:20062
- [31] R. STEINBERG, Regular elements of semi-simple algebraic groups, Publ. Math. I.H.E.S., 25 (1965), 49-80. Zbl0136.30002MR31 #4788
- [32] J. TITS, Classification of algebraic semi-simple groups, Proc. A.M.S. Symp. Pure Math., 9 (1966), 33-62. Zbl0238.20052MR37 #309
- [33] J. TITS, Reductive groups over local fields, Proc. A.M.S. Symp. Pure Math., 33 (1979), Part I, 29-69. Zbl0415.20035MR80h:20064
- [34] A. WEIL, Adèles and algebraic groups, Boston, Birkhäuser (1982). Zbl0493.14028MR83m:10032
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.