Inductive čech completeness and dimension
Compositio Mathematica (1982)
- Volume: 45, Issue: 2, page 145-153
- ISSN: 0010-437X
Access Full Article
topHow to cite
topReferences
top- [1] J.M. Aarts: Completeness degree. A generalization of dimension. Fund. Math.63 (1968) 27-41. Zbl0167.51303MR232341
- [2] J.M. Aarts and T. Nishiura: Kernels in dimension theory. Trans. Amer. Math. Soc.178 (1973) 227-240. Zbl0263.54029MR321037
- [3] J.M. Aarts and T. Nishiura, Covering dimension modulo a class of spaces. Fund. Math.72 (1973) 75-97. Zbl0245.54035MR322827
- [4] M.G. Bell and J. Van Mill: The compactness number of a compact topological space. Fund. Math.106 (1980) 163-173. Zbl0362.54014MR584490
- [5] R. Engelking: General Topology. Polish Scientific Publishers, Warszawa (1977). Zbl0157.53001MR500780
- [6] H. Freudenthal: Kompaktisierungen und Bikompaktisierungen, Proc. Kon. Ned. Ak. v. Wet., Series A, 54 (1951) 184-192. Zbl0043.16501MR40646
- [7] J. De Groot: Topologische Studiën, Compactificatie, Voortzetting van Afbeeldingen en Samenhang, Thesis. University of Groningen (1942). Zbl0027.26703MR13299JFM68.0509.02
- [8] J. De Groot and T. Nishiura: Inductive compactness as a generalization of semicompactness. Fund. Math.58 (1966) 201-218. Zbl0141.39802MR196704
- [9] J.R. Isbell, Uniform Spaces, AMS Colloquium Publications, Providence1964. Zbl0124.15601MR170323
- [10] S Mardešsic:On covering dimension and inverse limits of compact spaces. Illinois Journ. Math.4 (1960) 278-291. Zbl0094.16902MR116306
- [11] Ju M. Smirnov: A completely regular non-semibicompact space with a zerodimensional Čech complement. Dokl. Akad. Nauk SSSR120 (1958) 1204-1206. Zbl0085.16903MR97785