Inductive čech completeness and dimension

Jan Van Mill

Compositio Mathematica (1982)

  • Volume: 45, Issue: 2, page 145-153
  • ISSN: 0010-437X

How to cite

top

Van Mill, Jan. "Inductive čech completeness and dimension." Compositio Mathematica 45.2 (1982): 145-153. <http://eudml.org/doc/89531>.

@article{VanMill1982,
author = {Van Mill, Jan},
journal = {Compositio Mathematica},
keywords = {Cech-complete space; strong inductive completeness degree; extension},
language = {eng},
number = {2},
pages = {145-153},
publisher = {Martinus Nijhoff Publishers},
title = {Inductive čech completeness and dimension},
url = {http://eudml.org/doc/89531},
volume = {45},
year = {1982},
}

TY - JOUR
AU - Van Mill, Jan
TI - Inductive čech completeness and dimension
JO - Compositio Mathematica
PY - 1982
PB - Martinus Nijhoff Publishers
VL - 45
IS - 2
SP - 145
EP - 153
LA - eng
KW - Cech-complete space; strong inductive completeness degree; extension
UR - http://eudml.org/doc/89531
ER -

References

top
  1. [1] J.M. Aarts: Completeness degree. A generalization of dimension. Fund. Math.63 (1968) 27-41. Zbl0167.51303MR232341
  2. [2] J.M. Aarts and T. Nishiura: Kernels in dimension theory. Trans. Amer. Math. Soc.178 (1973) 227-240. Zbl0263.54029MR321037
  3. [3] J.M. Aarts and T. Nishiura, Covering dimension modulo a class of spaces. Fund. Math.72 (1973) 75-97. Zbl0245.54035MR322827
  4. [4] M.G. Bell and J. Van Mill: The compactness number of a compact topological space. Fund. Math.106 (1980) 163-173. Zbl0362.54014MR584490
  5. [5] R. Engelking: General Topology. Polish Scientific Publishers, Warszawa (1977). Zbl0157.53001MR500780
  6. [6] H. Freudenthal: Kompaktisierungen und Bikompaktisierungen, Proc. Kon. Ned. Ak. v. Wet., Series A, 54 (1951) 184-192. Zbl0043.16501MR40646
  7. [7] J. De Groot: Topologische Studiën, Compactificatie, Voortzetting van Afbeeldingen en Samenhang, Thesis. University of Groningen (1942). Zbl0027.26703MR13299JFM68.0509.02
  8. [8] J. De Groot and T. Nishiura: Inductive compactness as a generalization of semicompactness. Fund. Math.58 (1966) 201-218. Zbl0141.39802MR196704
  9. [9] J.R. Isbell, Uniform Spaces, AMS Colloquium Publications, Providence1964. Zbl0124.15601MR170323
  10. [10] S Mardešsic:On covering dimension and inverse limits of compact spaces. Illinois Journ. Math.4 (1960) 278-291. Zbl0094.16902MR116306
  11. [11] Ju M. Smirnov: A completely regular non-semibicompact space with a zerodimensional Čech complement. Dokl. Akad. Nauk SSSR120 (1958) 1204-1206. Zbl0085.16903MR97785

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.