Inductive čech completeness and dimension

Jan Van Mill

Compositio Mathematica (1982)

  • Volume: 45, Issue: 2, page 145-153
  • ISSN: 0010-437X

How to cite

top

Van Mill, Jan. "Inductive čech completeness and dimension." Compositio Mathematica 45.2 (1982): 145-153. <http://eudml.org/doc/89531>.

@article{VanMill1982,
author = {Van Mill, Jan},
journal = {Compositio Mathematica},
keywords = {Cech-complete space; strong inductive completeness degree; extension},
language = {eng},
number = {2},
pages = {145-153},
publisher = {Martinus Nijhoff Publishers},
title = {Inductive čech completeness and dimension},
url = {http://eudml.org/doc/89531},
volume = {45},
year = {1982},
}

TY - JOUR
AU - Van Mill, Jan
TI - Inductive čech completeness and dimension
JO - Compositio Mathematica
PY - 1982
PB - Martinus Nijhoff Publishers
VL - 45
IS - 2
SP - 145
EP - 153
LA - eng
KW - Cech-complete space; strong inductive completeness degree; extension
UR - http://eudml.org/doc/89531
ER -

References

top
  1. [1] J.M. Aarts: Completeness degree. A generalization of dimension. Fund. Math.63 (1968) 27-41. Zbl0167.51303MR232341
  2. [2] J.M. Aarts and T. Nishiura: Kernels in dimension theory. Trans. Amer. Math. Soc.178 (1973) 227-240. Zbl0263.54029MR321037
  3. [3] J.M. Aarts and T. Nishiura, Covering dimension modulo a class of spaces. Fund. Math.72 (1973) 75-97. Zbl0245.54035MR322827
  4. [4] M.G. Bell and J. Van Mill: The compactness number of a compact topological space. Fund. Math.106 (1980) 163-173. Zbl0362.54014MR584490
  5. [5] R. Engelking: General Topology. Polish Scientific Publishers, Warszawa (1977). Zbl0157.53001MR500780
  6. [6] H. Freudenthal: Kompaktisierungen und Bikompaktisierungen, Proc. Kon. Ned. Ak. v. Wet., Series A, 54 (1951) 184-192. Zbl0043.16501MR40646
  7. [7] J. De Groot: Topologische Studiën, Compactificatie, Voortzetting van Afbeeldingen en Samenhang, Thesis. University of Groningen (1942). Zbl0027.26703MR13299JFM68.0509.02
  8. [8] J. De Groot and T. Nishiura: Inductive compactness as a generalization of semicompactness. Fund. Math.58 (1966) 201-218. Zbl0141.39802MR196704
  9. [9] J.R. Isbell, Uniform Spaces, AMS Colloquium Publications, Providence1964. Zbl0124.15601MR170323
  10. [10] S Mardešsic:On covering dimension and inverse limits of compact spaces. Illinois Journ. Math.4 (1960) 278-291. Zbl0094.16902MR116306
  11. [11] Ju M. Smirnov: A completely regular non-semibicompact space with a zerodimensional Čech complement. Dokl. Akad. Nauk SSSR120 (1958) 1204-1206. Zbl0085.16903MR97785

NotesEmbed ?

top

You must be logged in to post comments.