Logarithmic derivatives of Dirichlet L -functions and the periods of abelian varieties

Greg W. Anderson

Compositio Mathematica (1982)

  • Volume: 45, Issue: 3, page 315-332
  • ISSN: 0010-437X

How to cite

top

Anderson, Greg W.. "Logarithmic derivatives of Dirichlet $L$-functions and the periods of abelian varieties." Compositio Mathematica 45.3 (1982): 315-332. <http://eudml.org/doc/89538>.

@article{Anderson1982,
author = {Anderson, Greg W.},
journal = {Compositio Mathematica},
keywords = {logarithmic derivatives; periods of CM-varieties; limit formulas for L- series; linear combinations of Dirichlet characters; periods of Fermat curves; p-adic L-series; period distribution},
language = {eng},
number = {3},
pages = {315-332},
publisher = {Martinus Nijhoff Publishers},
title = {Logarithmic derivatives of Dirichlet $L$-functions and the periods of abelian varieties},
url = {http://eudml.org/doc/89538},
volume = {45},
year = {1982},
}

TY - JOUR
AU - Anderson, Greg W.
TI - Logarithmic derivatives of Dirichlet $L$-functions and the periods of abelian varieties
JO - Compositio Mathematica
PY - 1982
PB - Martinus Nijhoff Publishers
VL - 45
IS - 3
SP - 315
EP - 332
LA - eng
KW - logarithmic derivatives; periods of CM-varieties; limit formulas for L- series; linear combinations of Dirichlet characters; periods of Fermat curves; p-adic L-series; period distribution
UR - http://eudml.org/doc/89538
ER -

References

top
  1. [B] M. Boyarsky: p-Adic gamma functions and Dwork cohomology. Trans. Am. Math. Soc.257 (1980), 350-369. Zbl0475.14017MR552263
  2. [CW] C. Chevalley and A. Weil: Über das Verhalten der Integrale 1. Gattung bei Automorphismen des Funktionskörper, Hamb. Abh.10 (1934), 358-361. Zbl0009.16001JFM60.0098.01
  3. [FG] B. Ferrero and R. Greenberg: On the behavior of p-adic L-functions at s = 0. Inv. Math.50 (1978), 90-102. Zbl0441.12003MR516606
  4. [GK] B.H. Gross and N. Koblitz: Gauss sums and the p-adic Γ-function, Ann. of Math.109 (1979), 569-581. Zbl0406.12010
  5. [GR] B.H. Gross(appendix by D. Rohrlich): On the periods of abelian integrals and a formula of Chowla and Selberg, Inv. Math.45 (1978), 193-211. Zbl0418.14023MR480542
  6. [H] T. Honda: Isogeny classes of abelian varieties over finite fields, J. Math. Soc. Japan20 (1968), 83-95. Zbl0203.53302MR229642
  7. [S] G. Shimura: Automorphic forms and the periods of abelian varieties. J. Math. Soc. Japan31 (1979), 561-592. Zbl0456.10015MR535097
  8. [W] A. Weil: Sur les périodes des intégrales abéliennes. Comm. Pure Appl. Math.29 (1976), 813-819. Zbl0342.14020MR422164
  9. [WW] E.T. Whittaker and G.N. Watson: A Course of Modem Analysis, Cambridge Univ. Press, Cambridge1902. JFM45.0433.02

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.