Generic maps and modules

Winfried Bruns

Compositio Mathematica (1982)

  • Volume: 47, Issue: 2, page 171-193
  • ISSN: 0010-437X

How to cite

top

Bruns, Winfried. "Generic maps and modules." Compositio Mathematica 47.2 (1982): 171-193. <http://eudml.org/doc/89568>.

@article{Bruns1982,
author = {Bruns, Winfried},
journal = {Compositio Mathematica},
keywords = {generic maps; generators; relations; determinantal loci; generic perfection; canonical modules},
language = {eng},
number = {2},
pages = {171-193},
publisher = {Martinus Nijhoff Publishers},
title = {Generic maps and modules},
url = {http://eudml.org/doc/89568},
volume = {47},
year = {1982},
}

TY - JOUR
AU - Bruns, Winfried
TI - Generic maps and modules
JO - Compositio Mathematica
PY - 1982
PB - Martinus Nijhoff Publishers
VL - 47
IS - 2
SP - 171
EP - 193
LA - eng
KW - generic maps; generators; relations; determinantal loci; generic perfection; canonical modules
UR - http://eudml.org/doc/89568
ER -

References

top
  1. [1] M. Auslander and M. Bridger: Stable module theory. Mem. Amer. Math. Soc.94 (1969). Zbl0204.36402MR269685
  2. [2] L.L. Avramov: A class of factorial domains. Institut Mittag-Leffler, Report No. 2 (1979). MR570242
  3. [3] L.L. Avramov: Complete intersections and symmetric algebras. Department of Mathematics, University of Stockholm, Report No. 7 (1980). MR641643
  4. [4] W. Bruns: The Eisenbud-Evans generalized principal ideal theorem and determinantal ideals. Proc. Amer. Math. Soc.83 (1981) 19-24. Zbl0478.13006MR619972
  5. [5] W. Bruns: The canonical module of a determinantal ring. To appear in the Proceedings of the Symposium on Commutative Algebra at Durham, July 1981. Zbl0502.14017MR693630
  6. [6] D.A. Buchsbaum: Complexes associated with the minors of a matrix. Symposia Math.IV (1970) 255-283. Zbl0248.18028MR272868
  7. [7] D.A. Buchsbaum and D. Eisenbud: What makes a complex intact? J. Algebra25 (1973) 259-268. Zbl0264.13007MR314819
  8. [8] D.A. Buchsbaum and D. Eisenbud: Remarks on ideals and resolutions. Symposia Math.XI (1973) 193-204. Zbl0294.13009MR337946
  9. [9] D.A. Buchsbaum and D. Eisenbud: Some structure theorems for finite free resolutions. Adv. Math.12 (1974) 84-139. Zbl0297.13014MR340240
  10. [10] D.A. Buchsbaum and D. Eisenbud: Generic free resolutions and a family of generically perfect ideals. Adv. Math.18 (1975) 245-301. Zbl0336.13007MR396528
  11. [11] D.A. Buchsbaum and D.S. Rim: A generalized Koszul complex II. Depth and multiplicity. Trans. Amer. Math. Soc.111 (1964) 197-224. Zbl0131.27802MR159860
  12. [12] J.A. Eagon and D.G. Northcott: Generically acyclic complexes and generically perfect ideals. Proc. Royal Soc.A299 (1967) 147-172. Zbl0225.13004MR214586
  13. [13] H.-B. Foxby: n-Gorenstein rings. Proc. Amer. Math. Soc.42 (1974) 67-72. Zbl0294.13015MR323784
  14. [14] S. Goto: On the Gorensteinness of determinantal loci. J. Math. Kyoto Univ.19 (1979) 371-374. Zbl0418.13008MR545715
  15. [15] M. Hochster: Generically perfect modules are strongly generically perfect. Proc. London Math. Soc. (3) 23 (1971) 477-488. Zbl0232.13014MR301002
  16. [16] M. Hochster and J.A. Eagon: Cohen-Macaulay rings, invariant theory, and the generic perfection of determinantal loci. Amer. J. Math.53 (1971) 1020-1058. Zbl0244.13012MR302643
  17. [17] H. Kleppe and D. Laksov: The algebraic structure and deformation of Pfaffian schemes. J. Algebra64 (1980) 167-189. Zbl0434.14004MR575789
  18. [19] A. Lascoux: Syzygies des variétés déterminantales. Adv. Math.30 (1978) 202-237. Zbl0394.14022MR520233
  19. [20] V. Marinov: Perfection of ideals generated by the pfaffians of an alternating matrix. C. R. Acad. Bulg. Sci.31 (1979). Zbl0428.14024MR547049
  20. [21] H. Matsumura: Commutative Algebra. W.-A. Benjamin, New York1970. Zbl0211.06501MR266911
  21. [22] D. Rees: The grade of an ideal or module. Proc. Cambridge Phil. Soc.53 (1957) 28-42. Zbl0079.26602MR82967
  22. [23] G. Scheja and U. Storch: Differentielle Eigenschaften der Lokalisierungen analytischer Algebren. Math. Ann.197 (1972) 137-170. Zbl0223.14002MR306172

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.