Generic maps and modules
Compositio Mathematica (1982)
- Volume: 47, Issue: 2, page 171-193
- ISSN: 0010-437X
Access Full Article
topHow to cite
topBruns, Winfried. "Generic maps and modules." Compositio Mathematica 47.2 (1982): 171-193. <http://eudml.org/doc/89568>.
@article{Bruns1982,
author = {Bruns, Winfried},
journal = {Compositio Mathematica},
keywords = {generic maps; generators; relations; determinantal loci; generic perfection; canonical modules},
language = {eng},
number = {2},
pages = {171-193},
publisher = {Martinus Nijhoff Publishers},
title = {Generic maps and modules},
url = {http://eudml.org/doc/89568},
volume = {47},
year = {1982},
}
TY - JOUR
AU - Bruns, Winfried
TI - Generic maps and modules
JO - Compositio Mathematica
PY - 1982
PB - Martinus Nijhoff Publishers
VL - 47
IS - 2
SP - 171
EP - 193
LA - eng
KW - generic maps; generators; relations; determinantal loci; generic perfection; canonical modules
UR - http://eudml.org/doc/89568
ER -
References
top- [1] M. Auslander and M. Bridger: Stable module theory. Mem. Amer. Math. Soc.94 (1969). Zbl0204.36402MR269685
- [2] L.L. Avramov: A class of factorial domains. Institut Mittag-Leffler, Report No. 2 (1979). MR570242
- [3] L.L. Avramov: Complete intersections and symmetric algebras. Department of Mathematics, University of Stockholm, Report No. 7 (1980). MR641643
- [4] W. Bruns: The Eisenbud-Evans generalized principal ideal theorem and determinantal ideals. Proc. Amer. Math. Soc.83 (1981) 19-24. Zbl0478.13006MR619972
- [5] W. Bruns: The canonical module of a determinantal ring. To appear in the Proceedings of the Symposium on Commutative Algebra at Durham, July 1981. Zbl0502.14017MR693630
- [6] D.A. Buchsbaum: Complexes associated with the minors of a matrix. Symposia Math.IV (1970) 255-283. Zbl0248.18028MR272868
- [7] D.A. Buchsbaum and D. Eisenbud: What makes a complex intact? J. Algebra25 (1973) 259-268. Zbl0264.13007MR314819
- [8] D.A. Buchsbaum and D. Eisenbud: Remarks on ideals and resolutions. Symposia Math.XI (1973) 193-204. Zbl0294.13009MR337946
- [9] D.A. Buchsbaum and D. Eisenbud: Some structure theorems for finite free resolutions. Adv. Math.12 (1974) 84-139. Zbl0297.13014MR340240
- [10] D.A. Buchsbaum and D. Eisenbud: Generic free resolutions and a family of generically perfect ideals. Adv. Math.18 (1975) 245-301. Zbl0336.13007MR396528
- [11] D.A. Buchsbaum and D.S. Rim: A generalized Koszul complex II. Depth and multiplicity. Trans. Amer. Math. Soc.111 (1964) 197-224. Zbl0131.27802MR159860
- [12] J.A. Eagon and D.G. Northcott: Generically acyclic complexes and generically perfect ideals. Proc. Royal Soc.A299 (1967) 147-172. Zbl0225.13004MR214586
- [13] H.-B. Foxby: n-Gorenstein rings. Proc. Amer. Math. Soc.42 (1974) 67-72. Zbl0294.13015MR323784
- [14] S. Goto: On the Gorensteinness of determinantal loci. J. Math. Kyoto Univ.19 (1979) 371-374. Zbl0418.13008MR545715
- [15] M. Hochster: Generically perfect modules are strongly generically perfect. Proc. London Math. Soc. (3) 23 (1971) 477-488. Zbl0232.13014MR301002
- [16] M. Hochster and J.A. Eagon: Cohen-Macaulay rings, invariant theory, and the generic perfection of determinantal loci. Amer. J. Math.53 (1971) 1020-1058. Zbl0244.13012MR302643
- [17] H. Kleppe and D. Laksov: The algebraic structure and deformation of Pfaffian schemes. J. Algebra64 (1980) 167-189. Zbl0434.14004MR575789
- [19] A. Lascoux: Syzygies des variétés déterminantales. Adv. Math.30 (1978) 202-237. Zbl0394.14022MR520233
- [20] V. Marinov: Perfection of ideals generated by the pfaffians of an alternating matrix. C. R. Acad. Bulg. Sci.31 (1979). Zbl0428.14024MR547049
- [21] H. Matsumura: Commutative Algebra. W.-A. Benjamin, New York1970. Zbl0211.06501MR266911
- [22] D. Rees: The grade of an ideal or module. Proc. Cambridge Phil. Soc.53 (1957) 28-42. Zbl0079.26602MR82967
- [23] G. Scheja and U. Storch: Differentielle Eigenschaften der Lokalisierungen analytischer Algebren. Math. Ann.197 (1972) 137-170. Zbl0223.14002MR306172
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.