On isospectral deformations of riemannian metrics. II

Ruishi Kuwabara

Compositio Mathematica (1982)

  • Volume: 47, Issue: 2, page 195-205
  • ISSN: 0010-437X

How to cite

top

Kuwabara, Ruishi. "On isospectral deformations of riemannian metrics. II." Compositio Mathematica 47.2 (1982): 195-205. <http://eudml.org/doc/89569>.

@article{Kuwabara1982,
author = {Kuwabara, Ruishi},
journal = {Compositio Mathematica},
keywords = {Laplace-Beltrami operator; spectrum; isospectral deformation; Riemannian metric; geodesic flow},
language = {eng},
number = {2},
pages = {195-205},
publisher = {Martinus Nijhoff Publishers},
title = {On isospectral deformations of riemannian metrics. II},
url = {http://eudml.org/doc/89569},
volume = {47},
year = {1982},
}

TY - JOUR
AU - Kuwabara, Ruishi
TI - On isospectral deformations of riemannian metrics. II
JO - Compositio Mathematica
PY - 1982
PB - Martinus Nijhoff Publishers
VL - 47
IS - 2
SP - 195
EP - 205
LA - eng
KW - Laplace-Beltrami operator; spectrum; isospectral deformation; Riemannian metric; geodesic flow
UR - http://eudml.org/doc/89569
ER -

References

top
  1. [1] R. Kuwabara: On isospectral deformations of Riemannian metrics. Comp. Math.40 (1980) 319-324. Zbl0406.53038MR571054
  2. [2] R. Kuwabara: On the characterization of flat metrics by the spectrum. Comment. Math. Helv.55 (1980) 427-444. Zbl0448.58027MR593057
  3. [3] M. Berger, P. Gauduchon, and E. Mazet: Le spectre d'une variété riemannienne. Lecture Notes in Mathematics194. Springer-Verlag, 1971. Zbl0223.53034MR282313
  4. [4] V. Guillemin and D. Kazhdan: Some inverse spectral results for negatively curved 2-manifolds. Topology19 (1980) 301-312. Zbl0465.58027MR579579
  5. [5] V. Guillemin and D. Kazhdan: Some inverse spectral results for negatively curved n-manifolds. Proc. Sympos. Pure Math.36 (1980) 153-180. Zbl0456.58031MR573432
  6. [6] S. Tanno: A characterization of the canonical sphere by the spectrum. Math. Z.175 (1980) 267-274. Zbl0431.53037MR602639
  7. [7] P.D. Lax: Integrals of nonlinear equations of evolution and solitary waves. Comm. Pure Appl. Math.21 (1968) 467-490. Zbl0162.41103MR235310
  8. [8] F.E. Browder: Families of linear operators depending upon a parameter. Am. J. Math.87 (1965) 752-758. Zbl0149.10001MR185450
  9. [9] J. Moser: On the volume elements on a manifold. Trans. Amer. Math. Soc.120 (1965) 286-294. Zbl0141.19407MR182927
  10. [10] M. Berger: Quelques formules de variation pour une structure riemannienne. Ann. sci. Éc. Norm. Sup., 4e serie 3 (1970) 285-294. Zbl0204.54802MR278238
  11. [11] D.G. Ebin and J. Marsden: Groups of diffeomorphisms and the motion of an incompressible fluid. Ann. of Math.92 (1970) 102-163. Zbl0211.57401MR271984
  12. [12] N. Koiso: Non-deformability of Einstein metrics. Osaka J. Math.15 (1978) 419-433. Zbl0392.53030MR504300
  13. [13] D.G. Ebin: The manifold of Riemannian metrics. Proc. Symp. Pure Math.15 (1970) 11-40. Zbl0205.53702MR267604
  14. [14] D.V. Anosov: Geodesic flow on closed Riemannian manifolds with negative curvature. Trudy Mat. Inst. Steklov90 (1967). Zbl0176.19101MR224110

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.