Variétés riemanniennes isospectrales non isométriques
Séminaire Bourbaki (1988-1989)
- Volume: 31, page 127-154
- ISSN: 0303-1179
Access Full Article
topHow to cite
topBérard, Pierre. "Variétés riemanniennes isospectrales non isométriques." Séminaire Bourbaki 31 (1988-1989): 127-154. <http://eudml.org/doc/110105>.
@article{Bérard1988-1989,
author = {Bérard, Pierre},
journal = {Séminaire Bourbaki},
keywords = {eigenvalue; spectrum; isospectrality},
language = {fre},
pages = {127-154},
publisher = {Société Mathématique de France},
title = {Variétés riemanniennes isospectrales non isométriques},
url = {http://eudml.org/doc/110105},
volume = {31},
year = {1988-1989},
}
TY - JOUR
AU - Bérard, Pierre
TI - Variétés riemanniennes isospectrales non isométriques
JO - Séminaire Bourbaki
PY - 1988-1989
PB - Société Mathématique de France
VL - 31
SP - 127
EP - 154
LA - fre
KW - eigenvalue; spectrum; isospectrality
UR - http://eudml.org/doc/110105
ER -
References
top- [1] Bérard P. — Transplantation des fonctions et isospectralité, en préparation.
- [1] Bérard P., Berger M.— Le spectre d'une variété riemannienne en 1982, in Spectra of Riemannian manifolds, Kaigai Publications (1983), 139-194, [Proc. France-Japan 1984 Seminar Kyoto ed. Berger, Murakami, Ochiai], ou dans Lecture Notes in Math. Springer, 1207 (1986).
- [1] Berger M. — Geometry of the spectrum, Proc. Symp. Pure Math.27 Part 2, Amer. Math. Soc.1975, 129-152. Zbl0311.53055MR383459
- [1] Berger M., Gauduchon P., Mazet E. — Le spectre d'une variété riemannienne, Lecture Notes in Math. Springer194, 1971. Zbl0223.53034MR282313
- [1] Berry J.P. — Tores isospectraux en dimension 3, C. R. Acad. Sci. Paris Sér. I Math., 292 (1981), 163-166. Zbl0464.58018MR610309
- [1] Bleecker D. — Determination of a Riemannian metric form the first variation of its spectrum, Amer. J. Math., 107 (1985), 815-831. Zbl0577.58032MR796904
- [1] Brooks R. — On manifolds of negative curvature with isospectral potentials, Topology, 26 (1987), 63-66. Zbl0617.53048MR880508
- [2] Brooks R. — Constructing isospectral manifolds, Amer. Math. Monthly, 95 (1988), 823-839. Zbl0673.58046MR967343
- [3] Brooks R. — Isospectral potentials on a surface of genus 3, Math. Sciences Reach. Institute series, Ed. D. Drasin, "Holomorphic functions and moduli", Springer, 1988, 203-208. Zbl0657.58047MR955822
- [1] Brooks R., Perry P., Yang P. — Isospectral sets of conformally equivalent metrics, Duke Math. J., à paraître. Zbl0667.53037
- [1] Brooks R., Tse R. — Isospectral surfaces of small genus, Nagoya Math. J., 107 (1987), 13-24. Zbl0605.58041MR909246
- [1] Brossard J., Carmona R. — Can one hear the dimension of a fractal, Comm. Math. Phys., 104 (1986), 103-122. Zbl0607.58043MR834484
- [1] Brüning J. — On the compactness of isospectral potentials, Comm. Partial Diff. Eq., 9 (1984), 687-698. Zbl0547.58039MR745021
- [1] Brüning J., Heintze E. — Spektrale Starrheit gewisser Drehflächen, Math. Ann., 269 (1984), 95-101. Zbl0553.53028MR756778
- [1] Buser P. — Isospectral Riemann surfaces, Ann. Inst. Fourier, 36 (1986), 167- 192. Zbl0579.53036MR850750
- [2] Buser P. — Riemannsche Flächen und Längenspektrum vom Trigonometrischen Standpunkte aus, Habilitationsschrift, Bonn, 1980.
- [3] Buser P. — Sur le spectre de longueurs des surfaces de Riemann, C. R. Acad. Sci. Paris Sér. I Math., 292 (1981), 487-498. Zbl0466.32012MR612543
- [4] Buser P. — Cayley graphs and planar isospectral domains, Proc. Taniguchi Symp. "Geometry and Analysis on manifolds"1987, Lecture Notes in Math. Springer , 1339 (1988), 64-77. Zbl0647.53034MR961473
- [5] Buser P. — Geometry and spectrum of compact Riemann surfaces, livre en préparation. Zbl0770.53001
- [1] Buser P., Courtois G. — Finite parts of the spectrum of a Riemann surface, Prépublication de l'Institut Fourier n° 121, Grenoble , 1989. Zbl0711.58033MR1060691
- [1] Buser P., Semmler K.D. — The geometry and spectrum of the one holed torus, Comment. Math. Helv., 63 (1988), 259-274. Zbl0649.53028MR948781
- [1] Chang P.K. — PhD Thesis, University of Pennsylvania, 1988.
- [1] Chang P., Deturck D. — On hearing the shape of a triangle, Proc. Amer. Math. Soc., à paraître. Zbl0721.58053
- [1] Chang S.Y.A., Yang P. — Compactness of isospectral conformal metrics on S3, Comment. Math. Helv., à paraître. Zbl0679.53038
- [2] Chang S.Y.A., Yang P. — The conformal deformation equation and isospectral sets of conformal metrics, Preprint, U. Southem Cal., 1988. MR925123
- [3] Chang S.Y.A., Yang P. — A compactness theorem for conformal metrics on 3-manifolds and application to isospectral metrics, Preprint, U. Southern Cal., 1988.
- [1] Chavel I. — Eigenvalues in Riemannian geometry, Acad. Press, 1984. Zbl0551.53001MR768584
- [1] Chen Sheng. — On the construction of isospectral but non isometric Riemannian manifolds, Preprint, 1988Louisiana State University Baton Rouge.
- [1] Craioveanu M., Puta M. — Introducere în Geometria Spectrală, Editions République Socialiste Roumaine, Bucarest, 1988. MR1011669
- [1] Deturck D.M. — Audible and inaudible geometric properties, Preprint U. Pennsylvania, 1988. MR1122855
- [1] Deturck D.M., Gordon C.S. — Isospectral deformations I : Riemannian structures on two-step nilspaces, Comm. Pure Appl. Math., 40 (1987), 367-387. Zbl0649.53025MR882070
- [2] Deturck D.M., Gordon C.S. — Isospectral metrics and finite Riemannian coverings, Contemporary Mathematics, Amer. Math. Soc., 64 (1987), 79-92. Zbl0646.58030MR881457
- [3] Deturck D.M., Gordon C.S. — Isospectral Riemannian metrics and potentials, Proc. Amer. Math. Soc., 17 (1987), 137-139. Zbl0629.58008MR888890
- [4] Deturck D.M., Gordon C.S. — Isospectral Riemannian metrics and potentials, Preprint Univ. Pennsylvania, 1987. MR888890
- [1] Deturck D., Gluck H., Gordon C., Webb D. — You cannot hear the size of a homology class, Comment. Math. Helv., à paraître. Zbl0694.53037
- [1] Durso C. — PhD Thesis, M.I.T., 1988.
- [1] Ejiri N. — A construction of nonflat, compact irreducible Riemannian manifolds which are isospectral but not isometric, Math. Z., 168 (1979), 207-212. Zbl0396.53022MR544590
- [1] Fay J. — Analytic torsion and Prym differentials, Ann. of Math. Stud., 97 (1981), 107-122. Zbl0458.30025MR624809
- [1] Fleckinger-Pellé J., Lapidus M.L. — Tambour fractal : vers une résolution de la conjecture de Weyl-Berry pour les valeurs propes du laplacien, C. R. Acad. Sci. Paris Sér. I Math., 306 (1988), 171. Zbl0654.35079MR930556
- [1] Gilkey P.B. — Invariance theory for the heat equation and the Atiyah-Singer index theorem, Publish or Perish Inc., 1984. Zbl0565.58035MR783634
- [2] Gilkey P.B. — On spherical space-forms with meta-cyclic fundamental group which are isospectral but not equivariant cobordant, Compositio Math., 56 (1985), 171-200. Zbl0593.58041MR809865
- [3] Gilkey P.B. — Leading terms in the asymptotics of the heat equation, Contemporary Math., 73 (1988), 79-85. Zbl0661.58034MR954631
- [1] Gordon C.S. — Riemannian manifolds isospectral on functions but not on 1- forms, J. Diff. Geom., 24 (1986), 79-96. Zbl0585.53036MR857377
- [2] Gordon C.S. — The Laplace spectrum versus the length spectra of Riemannian manifolds, in Nonlinear Problems in Geometry (D.M. De Turck, ed.) Contemporary Math., 51 (1986), 63-80. Zbl0591.53042MR848934
- [1] Gordon C.S., Wilson E.N. — Isospectral deformations of compact solvmanifolds, J. Diff. Geom., 19 (1984), 241-256. Zbl0523.58043MR739790
- [2] Gordon C.S., Wilson E.N. — The spectrum of the Laplacian on Riemannian Heisenberg manifolds, Michigan Math. J., 33 (1986), 253-271. Zbl0599.53038MR837583
- [3] Gordon C.S., Wilson E.N. — Isometry groups of Riemannian solvmanifolds, Trans. Amer. Math. Soc., 307 (1988), 245-269. Zbl0664.53022MR936815
- [1] Guillemin V.W. — Lectures on spectral theory of elliptic operators, Duke Math. J., 44 (1977), 485-517. Zbl0463.58024MR448452
- [2] Guillemin V.W. — Inverse spectral problems in geometry, Preprint M.I.T., 1988.
- [1] Guillemin V., Kazhdan D. — Some inverse spectral results for negatively curved 2-manifolds, Topology, 19 (1980), 153-180. Zbl0456.58031MR579579
- [2] Guillemin V., Kazhdan D. — Some inverse spectral results for negatively curved n-manifolds, Proc. Symp. Pure Math., Geometry of the Laplace Operator, Amer. Math. Soc., 36 (1980), 153-180. Zbl0456.58031MR573432
- [1] Guralnick R.M. — Subgroups inducing the same permutation representation, J. of Algebra, 81 (1983), 312-319. Zbl0527.20005MR700287
- [1] Haas A. — Length spectra as moduli for hyperbolic surfaces, Duke Math. J., 5 (1985), 922-935. Zbl0595.30052MR816393
- [1] Hejhal D. — The Selberg trace formula and the Riemann zeta function, Duke Math. J., 43 (1976), 441-482. Zbl0346.10010MR414490
- [2] Hejhal D. — The Selberg trace formula for PSL(2, R), Vol. I : Lecture Notes in Math. Springer548, 1976 Vol. II : Lecture Notes in Math. Springer1001, 1983. Zbl0347.10018MR439755
- [1] Ikeda A. — Isospectral problem for spherical space forms, in spectra of Riemannian Manifolds, ed. by M. Berger, S. Murakami and T. Ochiai, Kaigai Publications (1983), 57-63.
- [2] Ikeda A. — Riemannian manifolds p-isospectral but not (p + 1)-isospectral, Preprint Hiroshima University, 1989. Zbl0704.53037MR1040537
- [1] Kac M. — Can one hear the shape of a drum ?, Amer. Math. Monthly, 73 (1966), 1-23. Zbl0139.05603MR201237
- [1] Keen L. — Collars on Riemann surfaces, Princeton U. Press, Ann. of Math. Stud., 79 (1974), 263-268. Zbl0304.30014MR379833
- [1] Kitaoka Y. — Positive definite quadratic forms with the same representation numbers, Arch. Math., 28 (1977), 495-497. Zbl0361.10019MR441864
- [1] Kneser M. — Lineare Relationen zwischen Darstellungszahlen quadratischer Formen, Math. Ann., 168 (1967), 31-39. Zbl0146.05901MR205943
- [1] Kuwabara R. — On isospectral deformations of Riemannian metrics, Compositio Math., 40 (1980), 319-324. Zbl0406.53038MR571054
- [2] Kuwabara R. — On the characterization of flat metrics by the spectrum, Comment. Math. Helv., 55 (1980), 427-444. Zbl0448.58027MR593057
- [3] Kuwabara R. — On isospectral deformations of Riemannian metrics II, Compositio Math., 47 (1982), 195-205. Zbl0505.53019MR677020
- [1] Mc Kean H.P. — Selberg's trace formula as applied to a compact Riemann surface, Comm. Pure Appl. Math., 25 (1972), 225-246. MR473166
- [2] Mc Kean H.P., Singer I.M. — Curvature and the eigenvalues of the Laplacian, J. Differential Geom., 1 (1967), 43-69. Zbl0198.44301MR217739
- [1] Melrose R. — Isospectral sets of drumheads are compact in C∞, Preprint M.S.R.I. Berkeley, 1984.
- [1] Milnor J. — Eigenvalues of the Laplace operator on certain manifolds, Proc. Nat. Acad. Sci., 51 (1964), 542. Zbl0124.31202MR162204
- [1] Min-oo M. — Spectral rigidity for manifolds with negative curvature operator, Contemp. Math. Nonlinear Problems in Geometry, 51 (1986), 99-103. Zbl0591.53041MR848937
- [1] Mumford D. — A remark on Mahler's compactness theorem, Proc. Amer. Math. Soc., 28 (1971), 289-294. Zbl0215.23202MR276410
- [1] Onofri E. — On the positivity of the effective action in a theory of random surfaces, Comm. Math. Phys., 86 (1982), 321-326. Zbl0506.47031MR677001
- [1] Osgood B., Phillips R., Sarnak P. — Extremals of determinants of Laplacians, J. Funct. Anal., 80 (1988), 148-211. Zbl0653.53022MR960228
- [2] Osgood B., Phillips R., Sarnak P. — Compact isospectral sets of Riemann surfaces, J. Funct. Anal., 80 (1988), 212-234. Zbl0653.53021MR960229
- [3] Osgood B., Phillips R., Sarnak P. — Compact isospectral sets of plane domains, Proc. Nat. Acad. Sci. U.S.A., 85 (1988), 5359-5361. Zbl0674.30021MR952815
- [4] Osgood B., Phillips R., Sarnak P. — Moduli space, heights and isospectral sets of plane domains, Ann. of Math., à paraître. Zbl0677.58045
- [1] Otal J.P. — Le spectre marqué des longueurs des surfaces à courbure négative, Preprint Orsay, 1988. MR1038361
- [1] Patodi V.K. — Curvature and the fundamental solution of the heat equation, J. Indian Math. Soc., 34 (1970), 269-285. Zbl0237.53039MR488181
- [1] Perlis R. — On the equation ζK(s) = ζK'(s), J. Number Theory, 9 (1977), 342-360. Zbl0389.12006
- [1] Sarnak P. — Determinants of Laplacians; heights and finiteness, Preprint Stanford U., 1988. MR1039364
- [1] Stolz S. — Exotic structures on 4-manifolds detected by spectral invariants, Invent. Math., 94 (1988), 147-162. Zbl0656.58032MR958593
- [1] Sunada T. — Spectrum of a compact flat manifold, Comment. Math. Helv., 53 (1978), 613-621. Zbl0422.53023MR511851
- [2] Sunada T. — Fundamental groups and Laplacians, Proc. Taniguchi Symp. "Geometry and Analysis on Manifolds"1987, Lecture Notes in Math. Springer , 1339 (1988), 248-277. Zbl0646.58027MR961485
- [3] Sunada T. — Riemannian coverings and isospectral manifolds, Ann. of Math., 121 (1985), 169-186. Zbl0585.58047MR782558
- [1] Tse R. — A lower bound for the number of isospectral surfaces of arbitrarily large genus, PhD ThesisU. Southern Cal., 1988. MR1034979
- [1] Urakawa H. — Bounded domains which are isospectral but not congruent, Ann. Sci. Ecole Norm. Sup., 15 (1982), 441-456. Zbl0505.58036MR690649
- [1] Uribe A. — Some remarks on the problem of isospectrality, Preprint Princeton, 1988.
- [1] Vignéras M.F. — Exemples de sous-groupes discrets non conjugués de PSL(2, R) qui ont même fonction zêta de Selberg, C.R. Acad. Sci. Paris, 287 (1978), 47-49. Zbl0387.10013MR491604
- [2] Vignéras M.F. — Variétés riemanniennes isospectrales et non isométriques, Ann. of Math., 112 (1980), 21-32. Zbl0445.53026MR584073
- [1] Witt E. — Eine Identität zwischen Modulformen zweiten Grades, Abh. Sem. Univ. Hamburg, 14 (1941), 289-322. Zbl0025.01701MR5508JFM67.0296.01
- [1] Wolpert S. — The eigenvalue spectrum as moduli for compact Riemann surfaces, Bull. Amer. Math. Soc., 83 (1977), 1306-1308. Zbl0368.32009MR499329
- [2] Wolpert S. — The Eigenvalue Spectrum as Moduli for Flat Tori, Trans. Amer. Math. Soc., 244 (1978), 313-321. Zbl0405.58051MR514879
- [3] Wolpert S. — The length spectrum as moduli for compact Riemann surfaces, Ann. Math., 109 (1979), 323-351. Zbl0441.30055MR528966
- [4] Wolpert S. — Asymptotics of the spectrum and the Selberg zêta function on the space of Riemann surfaces, Comm. Math. Phys., 112 (1987), 283-315. Zbl0629.58029MR905169
Citations in EuDML Documents
top- Bruno Colbois, Introduction au laplacien
- Pierre Bérard, Transplantation et isospectralité II
- Pierre Bérard, Transplantation et isospectralité I
- Carolyn S. Gordon, Ruth Gornet, Dorothee Schueth, David L. Webb, Edward N. Wilson, Isospectral deformations of closed riemannian manifolds with different scalar curvature
- Emmanuel Philippe, Le spectre des longueurs des surfaces hyperboliques : un exemple de rigidité.
- Pierre Pansu, Le flot géodésique des variétés riemanniennes à courbure négative
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.