Modular curves and unramified extensions of number fields

S. Kamienny

Compositio Mathematica (1982)

  • Volume: 47, Issue: 2, page 223-235
  • ISSN: 0010-437X

How to cite


Kamienny, S.. "Modular curves and unramified extensions of number fields." Compositio Mathematica 47.2 (1982): 223-235. <>.

author = {Kamienny, S.},
journal = {Compositio Mathematica},
keywords = {modular curves; unramified extensions of number fields; Bernoulli numbers; ideal class groups; Eisenstein prime},
language = {eng},
number = {2},
pages = {223-235},
publisher = {Martinus Nijhoff Publishers},
title = {Modular curves and unramified extensions of number fields},
url = {},
volume = {47},
year = {1982},

AU - Kamienny, S.
TI - Modular curves and unramified extensions of number fields
JO - Compositio Mathematica
PY - 1982
PB - Martinus Nijhoff Publishers
VL - 47
IS - 2
SP - 223
EP - 235
LA - eng
KW - modular curves; unramified extensions of number fields; Bernoulli numbers; ideal class groups; Eisenstein prime
UR -
ER -


  1. [1] P. Deligne and N. Rapoport: Schémas de modules de courbes elliptiques. Lecture Notes in Mathematics349, Berlin -Heidelberg-New York, Springer-Verlag, 1973. Zbl0281.14010MR337993
  2. [2] M. Demazure: Lectures on p-divisible groups. Lecture Notes in Mathematics302, Berlin- Heidelberg-New York, Springer-Verlag, 1972. Zbl0247.14010MR883960
  3. [3] N. Katz: p-adic properties of modular schemes and modular forms, Vol. III of the Proceedings of the International Summer School on Modular Functions, Antwerp, 1972. Lecture Notes in Mathematics350, Berlin- Heidelberg-New York, Springer-Verlag, 1973. Zbl0271.10033MR447119
  4. [4] S. Kamienny: Harvard Ph.D. Thesis (December 1980). 
  5. [5] S. Kamienny and G. Stevens: Special values of L-functions attached to X1(N), to appear. Zbl0519.14018
  6. [6] D. Kubert and S. Lang: Modular Units, Berlin-Heidelberg -New York, Springer-Verlag, 1981. Zbl0492.12002MR648603
  7. [7] S. Lang: Introduction to modular forms, Berlin- Heidelberg-New York, Springer-Verlag, 1976. Zbl0344.10011MR429740
  8. [8] B. Mazur: Modular curves and the Eisenstein ideal. Publications Mathematiques I.H.E.S.47 (1978). 
  9. [9] B. Mazur: Rational isogenies of prime degree. Inv. Math.44 (1978) 129-162. Zbl0386.14009MR482230
  10. [10] B. Mazur and J. Tate: Points of Order 13 on elliptic curves. Inv. Math.22 (1973) 41-49. Zbl0268.14009MR347826
  11. [11] B. Mazur and A. Wiles: Class fields of abelian extensions of Q, in preparation. Zbl0545.12005
  12. [12] M. Raynaud: Schémas en groupes de type (p,..., p). Bull. Soc. Math. France102 (1974) 241-280. Zbl0325.14020MR419467
  13. [13] K. Ribet: A modular construction of unramified p-extensions of Q(μp). Inv. Math.34 (1976) 151-162. Zbl0338.12003
  14. [14] J.-P. Serre: Abelian l-adic representations and elliptic curves. Lectures at McGill University, New York- Amsterdam, W.A. Benjamin, Inc., 1968. Zbl0186.25701MR263823
  15. [15] J.-P. Serre and J. Tate: Good reduction of abelian varieties. Ann. of Math.88 (1968) 492-517. Zbl0172.46101MR236190
  16. [16] G. Shimura: Introduction to the arithmetic theory of automorphic Forms. Publ. Math. Soc. Japan11, Tokyo-Princeton, 1971. Zbl0221.10029MR314766
  17. [17] A. Wiles: Modular curves and the class group of Q(ζ p). Inv. Math.58 (1980) 1-35. Zbl0436.12004

NotesEmbed ?


You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.


Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.