Sur les multiplicités de Schubert locales des faisceaux algébriques cohérents
Compositio Mathematica (1983)
- Volume: 48, Issue: 3, page 311-326
- ISSN: 0010-437X
Access Full Article
topHow to cite
topNavarro Aznar, V.. "Sur les multiplicités de Schubert locales des faisceaux algébriques cohérents." Compositio Mathematica 48.3 (1983): 311-326. <http://eudml.org/doc/89596>.
@article{NavarroAznar1983,
author = {Navarro Aznar, V.},
journal = {Compositio Mathematica},
keywords = {local Euler obstruction; blowing-up; Borel-Moore cohomology; Grassmannian; coherent sheaf; local Schubert multiplicity},
language = {fre},
number = {3},
pages = {311-326},
publisher = {Martinus Nijhoff Publishers},
title = {Sur les multiplicités de Schubert locales des faisceaux algébriques cohérents},
url = {http://eudml.org/doc/89596},
volume = {48},
year = {1983},
}
TY - JOUR
AU - Navarro Aznar, V.
TI - Sur les multiplicités de Schubert locales des faisceaux algébriques cohérents
JO - Compositio Mathematica
PY - 1983
PB - Martinus Nijhoff Publishers
VL - 48
IS - 3
SP - 311
EP - 326
LA - fre
KW - local Euler obstruction; blowing-up; Borel-Moore cohomology; Grassmannian; coherent sheaf; local Schubert multiplicity
UR - http://eudml.org/doc/89596
ER -
References
top- [1] J.A. Eagon et M. Hochster: Cohen-Macaulay rings, invariant theory, and the perfection of determinantal loci. Am. Journ. Math.93 (1971) 1020-1058. Zbl0244.13012MR302643
- [2] W. Fulton: Rational equivalence on singular varieties. Publ. Math. I.H.E.S.45 (1975) 147-167. Zbl0332.14002MR404257
- [3] G. González-Sprinberg: L'obstruction locale d'Euler et le théorème de MacPherson, dans "Caractéristique d'Euler-Poincaré". Astérisque82-83 (1981) 7-32. Zbl0482.14003MR629121
- [4] G. Kempf et D. Laskov: The determinantal formula of Schubert calculus. Acta mathematica132 (1974) 153-162. Zbl0295.14023MR338006
- [5] S. Kleiman: Toward a numerical theory of ampleness. Ann. Math.84 (1966) 293-344. Zbl0146.17001MR206009
- [6] S. Kleiman: The transversality of a general translate. Comp. Math.28 (1974) 287-297. Zbl0288.14014MR360616
- [7] G. Laumon: Homologie étale, dans "Séminaire de géométrie analytique". A. Douady—J.L. Verdier. Astérisque36-37 (1976) 163-188. Zbl0341.14006
- [8] D.T. Lê et B. Teissier: Variétés polaires locales et classes de Chern des variétés singulières, à paraitre. Zbl0488.32004
- [9] R. Macpherson: Chern classes for singular algebraic varieties. Ann. Math.100 (1974) 423-432. Zbl0311.14001MR361141
- [10] C.P. Ramanujan: On a Geometric Interpretation of Multiplicity. Invent. Math.22 (1973) 63-67. Zbl0265.14004MR354663
- [11] D. Rees: A-transforms of ideals and a theorem on multiplicities of ideals. Proc. Cambridge Phil. Soc.57 (1961) 8-17. Zbl0111.24803MR118750
- [12] O. Riemenschneider: Characterizing Moishezon Spaces by Almost Positive Coherent Analytic Sheaves. Math. Z.123 (1971) 263-284. Zbl0214.48501MR294714
- [13] H. Rossi: Picard variety of an isolated singular point. Rice Univ. Studies54 (1968) 63-73. Zbl0179.40103MR244517
- [14] M. Stoia: Une remarque sur la profondeur. C.R. Acad. Sc. Paris276 (1973) 929-930. Zbl0252.14003MR320002
- [15] J.L. Verdier: Introduction, dans "Caractéristique d'Euler-Poincaré" . Astérisque82-83 (1981) 3-6.
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.