Sur les multiplicités de Schubert locales des faisceaux algébriques cohérents

V. Navarro Aznar

Compositio Mathematica (1983)

  • Volume: 48, Issue: 3, page 311-326
  • ISSN: 0010-437X

How to cite

top

Navarro Aznar, V.. "Sur les multiplicités de Schubert locales des faisceaux algébriques cohérents." Compositio Mathematica 48.3 (1983): 311-326. <http://eudml.org/doc/89596>.

@article{NavarroAznar1983,
author = {Navarro Aznar, V.},
journal = {Compositio Mathematica},
keywords = {local Euler obstruction; blowing-up; Borel-Moore cohomology; Grassmannian; coherent sheaf; local Schubert multiplicity},
language = {fre},
number = {3},
pages = {311-326},
publisher = {Martinus Nijhoff Publishers},
title = {Sur les multiplicités de Schubert locales des faisceaux algébriques cohérents},
url = {http://eudml.org/doc/89596},
volume = {48},
year = {1983},
}

TY - JOUR
AU - Navarro Aznar, V.
TI - Sur les multiplicités de Schubert locales des faisceaux algébriques cohérents
JO - Compositio Mathematica
PY - 1983
PB - Martinus Nijhoff Publishers
VL - 48
IS - 3
SP - 311
EP - 326
LA - fre
KW - local Euler obstruction; blowing-up; Borel-Moore cohomology; Grassmannian; coherent sheaf; local Schubert multiplicity
UR - http://eudml.org/doc/89596
ER -

References

top
  1. [1] J.A. Eagon et M. Hochster: Cohen-Macaulay rings, invariant theory, and the perfection of determinantal loci. Am. Journ. Math.93 (1971) 1020-1058. Zbl0244.13012MR302643
  2. [2] W. Fulton: Rational equivalence on singular varieties. Publ. Math. I.H.E.S.45 (1975) 147-167. Zbl0332.14002MR404257
  3. [3] G. González-Sprinberg: L'obstruction locale d'Euler et le théorème de MacPherson, dans "Caractéristique d'Euler-Poincaré". Astérisque82-83 (1981) 7-32. Zbl0482.14003MR629121
  4. [4] G. Kempf et D. Laskov: The determinantal formula of Schubert calculus. Acta mathematica132 (1974) 153-162. Zbl0295.14023MR338006
  5. [5] S. Kleiman: Toward a numerical theory of ampleness. Ann. Math.84 (1966) 293-344. Zbl0146.17001MR206009
  6. [6] S. Kleiman: The transversality of a general translate. Comp. Math.28 (1974) 287-297. Zbl0288.14014MR360616
  7. [7] G. Laumon: Homologie étale, dans "Séminaire de géométrie analytique". A. Douady—J.L. Verdier. Astérisque36-37 (1976) 163-188. Zbl0341.14006
  8. [8] D.T. Lê et B. Teissier: Variétés polaires locales et classes de Chern des variétés singulières, à paraitre. Zbl0488.32004
  9. [9] R. Macpherson: Chern classes for singular algebraic varieties. Ann. Math.100 (1974) 423-432. Zbl0311.14001MR361141
  10. [10] C.P. Ramanujan: On a Geometric Interpretation of Multiplicity. Invent. Math.22 (1973) 63-67. Zbl0265.14004MR354663
  11. [11] D. Rees: A-transforms of ideals and a theorem on multiplicities of ideals. Proc. Cambridge Phil. Soc.57 (1961) 8-17. Zbl0111.24803MR118750
  12. [12] O. Riemenschneider: Characterizing Moishezon Spaces by Almost Positive Coherent Analytic Sheaves. Math. Z.123 (1971) 263-284. Zbl0214.48501MR294714
  13. [13] H. Rossi: Picard variety of an isolated singular point. Rice Univ. Studies54 (1968) 63-73. Zbl0179.40103MR244517
  14. [14] M. Stoia: Une remarque sur la profondeur. C.R. Acad. Sc. Paris276 (1973) 929-930. Zbl0252.14003MR320002
  15. [15] J.L. Verdier: Introduction, dans "Caractéristique d'Euler-Poincaré" . Astérisque82-83 (1981) 3-6. 

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.