Universal cycle classes

Henri Gillet

Compositio Mathematica (1983)

  • Volume: 49, Issue: 1, page 3-49
  • ISSN: 0010-437X

How to cite

top

Gillet, Henri. "Universal cycle classes." Compositio Mathematica 49.1 (1983): 3-49. <http://eudml.org/doc/89604>.

@article{Gillet1983,
author = {Gillet, Henri},
journal = {Compositio Mathematica},
keywords = {Chow ring; étale cohomology; crystalline cohomology; universal cycle classes; local complete intersections; intersection theory on singular varieties},
language = {eng},
number = {1},
pages = {3-49},
publisher = {Martinus Nijhoff Publishers},
title = {Universal cycle classes},
url = {http://eudml.org/doc/89604},
volume = {49},
year = {1983},
}

TY - JOUR
AU - Gillet, Henri
TI - Universal cycle classes
JO - Compositio Mathematica
PY - 1983
PB - Martinus Nijhoff Publishers
VL - 49
IS - 1
SP - 3
EP - 49
LA - eng
KW - Chow ring; étale cohomology; crystalline cohomology; universal cycle classes; local complete intersections; intersection theory on singular varieties
UR - http://eudml.org/doc/89604
ER -

References

top
  1. [1] P. Berthelot: Cohomologie cristalline des schemas de caracteristique p &gt; 0. Lecture Notes in Math. 407 (1976), Springer-Verlag. Zbl0298.14012MR384804
  2. [2] S. Bloch: K2 and algebraic cycles. Ann. of Math.99 (1974) 349-379. Zbl0298.14005MR342514
  3. [3] P. Baum, W. Fulton and R. Macpherson: Riemann—Roch for singular varieties. Publ. Math. IHES45 (1975) 107-146. Zbl0332.14003
  4. [4] P. Berthelot and A. Ogus: Notes on Crystalline Cohomology. Math. Notes21 (1978). Princeton Univ. Press. Zbl0383.14010MR491705
  5. [5] L. Burch: On ideals of finite homological dimension in local rings. Proc. Camb. Phil. Soc.64 (1968) 941-946. Zbl0172.32302MR229634
  6. [6] P. Deligne: Theorie de Hodge, III. Publ. Math. IHES44 (1974) 5-78. Zbl0237.14003MR498552
  7. [7] P. Deligne: La classe de cohomologie associee a un cycle. Lecture Notes in Math.569 (1977) 129-153. Springer-Verlag. Zbl0349.14012MR463174
  8. [8] J. Eagon and D. Northcott: Ideals defined by matrices and a certain complex associated to them. Proc. Royal. Soc. a269 (1962) 188-204. Zbl0106.25603MR142592
  9. [9] E. Friedlander: Etale homotopy theory of simplicial schemes. Preprint. Zbl0538.55001
  10. [10] W. Fulton: Rational equivalence on algebraic varieties. Publications Mathématiques IHES45 (1975) 147-165. Zbl0332.14002MR404257
  11. [11] W. Fulton and R. Macpherson: Bivariant theories. Preprint (1980). 
  12. [12] H. Gillet: The applications of algebraic K-theory to intersection theory, Harvard Thesis (1978). 
  13. [13] R. Godement: Topologie algebrique et theorie des faisceux, Hermann (Paris) 1958. Zbl0080.16201MR102797
  14. [14] D. Grayson: The K-theory of Hereditary Categories. J. of Pure and Appl. Alg.11 (1977) 67-74. Zbl0372.18004MR476833
  15. [15] D. Grayson: Products in K-theory and intersecting algebraic cycles. Inventiones Math.12 (1978). Zbl0394.14004MR491685
  16. [16] H.I. Green: Chern classes for coherent cheaves. Preprint, Univ. of Warwick. 
  17. [17] P. Griffiths and J. Adams: Topics in algebraic and analytic geometry. Notes from a course taught at Princeton, Princeton U. Press (1974). Zbl0302.14003MR355119
  18. [18] R. Hartshorne: Ample subvarieties of algebraic varieties. Lecture Notes in Math.156 (1970). Springer-Verlag. Zbl0208.48901MR282977
  19. [19] R. Hartshorne: Residues and duality. Lecture Notes in Math.20 (1966). Springer-Verlag. Zbl0212.26101MR222093
  20. [20] J.P. May: Simplicial Objects in Algebraic Topology. Van Nostrand (1967). Zbl0165.26004MR222892
  21. [21] D. Quillen: Higher algebraic K-theory I. L.N.M.341 (1973) 85-147. Springer-Verlag. Zbl0292.18004MR338129
  22. [22] D. Toledo and Y.-L. Tong: A paramatrix for ∂ and Riemann-Roch in Cech Theory. Topology15 (1976) 273-302. Zbl0355.58014
  23. [23] J.-L. Verdier: Seminaire Bourbaki, No. 464 (1974-75). Zbl0349.14001
  24. [24] F. Waldhausen: Algebraic K-theory of generalized free products, I and II. Ann. Math.108 (1978) 135-256. Zbl0407.18009MR498807
  25. [25] J.P. Serre: Algebrè Local, Multiplicités. Lecture Notes in Math.11 (3rd edition, 1975). Springer-Verlag, Berlin. Zbl0296.13018MR201468
  26. [26] S. Lubkin: A p-adic proof of Weil's conjectures. Ann. of Math.87 (1968) 105-255. Zbl0188.53004MR224616

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.