Universal cycle classes

Henri Gillet

Compositio Mathematica (1983)

  • Volume: 49, Issue: 1, page 3-49
  • ISSN: 0010-437X

How to cite

top

Gillet, Henri. "Universal cycle classes." Compositio Mathematica 49.1 (1983): 3-49. <http://eudml.org/doc/89604>.

@article{Gillet1983,
author = {Gillet, Henri},
journal = {Compositio Mathematica},
keywords = {Chow ring; étale cohomology; crystalline cohomology; universal cycle classes; local complete intersections; intersection theory on singular varieties},
language = {eng},
number = {1},
pages = {3-49},
publisher = {Martinus Nijhoff Publishers},
title = {Universal cycle classes},
url = {http://eudml.org/doc/89604},
volume = {49},
year = {1983},
}

TY - JOUR
AU - Gillet, Henri
TI - Universal cycle classes
JO - Compositio Mathematica
PY - 1983
PB - Martinus Nijhoff Publishers
VL - 49
IS - 1
SP - 3
EP - 49
LA - eng
KW - Chow ring; étale cohomology; crystalline cohomology; universal cycle classes; local complete intersections; intersection theory on singular varieties
UR - http://eudml.org/doc/89604
ER -

References

top
  1. [1] P. Berthelot: Cohomologie cristalline des schemas de caracteristique p &gt; 0. Lecture Notes in Math. 407 (1976), Springer-Verlag. Zbl0298.14012MR384804
  2. [2] S. Bloch: K2 and algebraic cycles. Ann. of Math.99 (1974) 349-379. Zbl0298.14005MR342514
  3. [3] P. Baum, W. Fulton and R. Macpherson: Riemann—Roch for singular varieties. Publ. Math. IHES45 (1975) 107-146. Zbl0332.14003
  4. [4] P. Berthelot and A. Ogus: Notes on Crystalline Cohomology. Math. Notes21 (1978). Princeton Univ. Press. Zbl0383.14010MR491705
  5. [5] L. Burch: On ideals of finite homological dimension in local rings. Proc. Camb. Phil. Soc.64 (1968) 941-946. Zbl0172.32302MR229634
  6. [6] P. Deligne: Theorie de Hodge, III. Publ. Math. IHES44 (1974) 5-78. Zbl0237.14003MR498552
  7. [7] P. Deligne: La classe de cohomologie associee a un cycle. Lecture Notes in Math.569 (1977) 129-153. Springer-Verlag. Zbl0349.14012MR463174
  8. [8] J. Eagon and D. Northcott: Ideals defined by matrices and a certain complex associated to them. Proc. Royal. Soc. a269 (1962) 188-204. Zbl0106.25603MR142592
  9. [9] E. Friedlander: Etale homotopy theory of simplicial schemes. Preprint. Zbl0538.55001
  10. [10] W. Fulton: Rational equivalence on algebraic varieties. Publications Mathématiques IHES45 (1975) 147-165. Zbl0332.14002MR404257
  11. [11] W. Fulton and R. Macpherson: Bivariant theories. Preprint (1980). 
  12. [12] H. Gillet: The applications of algebraic K-theory to intersection theory, Harvard Thesis (1978). 
  13. [13] R. Godement: Topologie algebrique et theorie des faisceux, Hermann (Paris) 1958. Zbl0080.16201MR102797
  14. [14] D. Grayson: The K-theory of Hereditary Categories. J. of Pure and Appl. Alg.11 (1977) 67-74. Zbl0372.18004MR476833
  15. [15] D. Grayson: Products in K-theory and intersecting algebraic cycles. Inventiones Math.12 (1978). Zbl0394.14004MR491685
  16. [16] H.I. Green: Chern classes for coherent cheaves. Preprint, Univ. of Warwick. 
  17. [17] P. Griffiths and J. Adams: Topics in algebraic and analytic geometry. Notes from a course taught at Princeton, Princeton U. Press (1974). Zbl0302.14003MR355119
  18. [18] R. Hartshorne: Ample subvarieties of algebraic varieties. Lecture Notes in Math.156 (1970). Springer-Verlag. Zbl0208.48901MR282977
  19. [19] R. Hartshorne: Residues and duality. Lecture Notes in Math.20 (1966). Springer-Verlag. Zbl0212.26101MR222093
  20. [20] J.P. May: Simplicial Objects in Algebraic Topology. Van Nostrand (1967). Zbl0165.26004MR222892
  21. [21] D. Quillen: Higher algebraic K-theory I. L.N.M.341 (1973) 85-147. Springer-Verlag. Zbl0292.18004MR338129
  22. [22] D. Toledo and Y.-L. Tong: A paramatrix for ∂ and Riemann-Roch in Cech Theory. Topology15 (1976) 273-302. Zbl0355.58014
  23. [23] J.-L. Verdier: Seminaire Bourbaki, No. 464 (1974-75). Zbl0349.14001
  24. [24] F. Waldhausen: Algebraic K-theory of generalized free products, I and II. Ann. Math.108 (1978) 135-256. Zbl0407.18009MR498807
  25. [25] J.P. Serre: Algebrè Local, Multiplicités. Lecture Notes in Math.11 (3rd edition, 1975). Springer-Verlag, Berlin. Zbl0296.13018MR201468
  26. [26] S. Lubkin: A p-adic proof of Weil's conjectures. Ann. of Math.87 (1968) 105-255. Zbl0188.53004MR224616

NotesEmbed ?

top

You must be logged in to post comments.