Karoubi’s relative Chern character and Beilinson’s regulator

Georg Tamme

Annales scientifiques de l'École Normale Supérieure (2012)

  • Volume: 45, Issue: 4, page 601-636
  • ISSN: 0012-9593

Abstract

top
We construct a variant of Karoubi’s relative Chern character for smooth varieties over 𝐂 and prove a comparison result with Beilinson’s regulator with values in Deligne-Beilinson cohomology. As a corollary we obtain a new proof of Burgos’ Theorem that for number fields Borel’s regulator is twice Beilinson’s regulator.

How to cite

top

Tamme, Georg. "Karoubi’s relative Chern character and Beilinson’s regulator." Annales scientifiques de l'École Normale Supérieure 45.4 (2012): 601-636. <http://eudml.org/doc/272157>.

@article{Tamme2012,
abstract = {We construct a variant of Karoubi’s relative Chern character for smooth varieties over $\mathbf \{C\}$ and prove a comparison result with Beilinson’s regulator with values in Deligne-Beilinson cohomology. As a corollary we obtain a new proof of Burgos’ Theorem that for number fields Borel’s regulator is twice Beilinson’s regulator.},
author = {Tamme, Georg},
journal = {Annales scientifiques de l'École Normale Supérieure},
keywords = {regulator; relative Chern character; secondary characteristic class; Borel regulator},
language = {eng},
number = {4},
pages = {601-636},
publisher = {Société mathématique de France},
title = {Karoubi’s relative Chern character and Beilinson’s regulator},
url = {http://eudml.org/doc/272157},
volume = {45},
year = {2012},
}

TY - JOUR
AU - Tamme, Georg
TI - Karoubi’s relative Chern character and Beilinson’s regulator
JO - Annales scientifiques de l'École Normale Supérieure
PY - 2012
PB - Société mathématique de France
VL - 45
IS - 4
SP - 601
EP - 636
AB - We construct a variant of Karoubi’s relative Chern character for smooth varieties over $\mathbf {C}$ and prove a comparison result with Beilinson’s regulator with values in Deligne-Beilinson cohomology. As a corollary we obtain a new proof of Burgos’ Theorem that for number fields Borel’s regulator is twice Beilinson’s regulator.
LA - eng
KW - regulator; relative Chern character; secondary characteristic class; Borel regulator
UR - http://eudml.org/doc/272157
ER -

References

top
  1. [1] A. A. Beĭlinson, Higher regulators and values of L -functions, in Current problems in mathematics, Vol. 24, Itogi Nauki i Tekhniki, Akad. Nauk SSSR Vsesoyuz. Inst. Nauchn. i Tekhn. Inform., 1984, 181–238. Zbl0588.14013MR760999
  2. [2] A. J. Berrick, An approach to algebraic K -theory, Research Notes in Math. 56, Pitman (Advanced Publishing Program), 1982. Zbl0479.18006MR649409
  3. [3] A. Borel, Stable real cohomology of arithmetic groups, Ann. Sci. École Norm. Sup.7 (1974), 235–272. Zbl0316.57026MR387496
  4. [4] A. Borel, Cohomologie de SL n et valeurs de fonctions zeta aux points entiers, Ann. Scuola Norm. Sup. Pisa Cl. Sci.4 (1977), 613–636. Zbl0382.57027MR506168
  5. [5] A. K. Bousfield & D. M. Kan, Homotopy limits, completions and localizations, Lecture Notes in Math. 304, Springer, 1972. Zbl0259.55004MR365573
  6. [6] J. I. Burgos Gil, The regulators of Beilinson and Borel, CRM Monograph Series 15, Amer. Math. Soc., 2002. Zbl0994.19003MR1869655
  7. [7] B. C. Carlson, Special functions of applied mathematics, Academic Press, 1977. Zbl0394.33001MR590943
  8. [8] P. Deligne, Théorie de Hodge. II, Publ. Math. I.H.É.S. 40 (1971), 5–57. Zbl0219.14007MR498551
  9. [9] P. Deligne, Théorie de Hodge. III, Publ. Math. I.H.É.S. 44 (1974), 5–77. Zbl0237.14003MR498552
  10. [10] J. L. Dupont, Simplicial de Rham cohomology and characteristic classes of flat bundles, Topology15 (1976), 233–245. Zbl0331.55012MR413122
  11. [11] J. L. Dupont, Curvature and characteristic classes, Lecture Notes in Math. 640, Springer, 1978. Zbl0373.57009MR500997
  12. [12] J. L. Dupont, R. Hain & S. Zucker, Regulators and characteristic classes of flat bundles, in The arithmetic and geometry of algebraic cycles (Banff, AB, 1998), CRM Proc. Lecture Notes 24, Amer. Math. Soc., 2000, 47–92. Zbl0976.14005MR1736876
  13. [13] H. Esnault & E. Viehweg, Deligne-Beĭlinson cohomology, in Beĭlinson’s conjectures on special values of L -functions, Perspect. Math. 4, Academic Press, 1988, 43–91. Zbl0656.14012MR944991
  14. [14] E. M. Friedlander, Étale homotopy of simplicial schemes, Annals of Math. Studies 104, Princeton Univ. Press, 1982. Zbl0538.55001MR676809
  15. [15] S. M. Gersten, Higher K -theory of rings, in Algebraic K -theory, I: Higher K -theories (Proc. Conf. Seattle Res. Center, Battelle Memorial Inst., 1972), Lecture Notes in Math. 341, Springer, 1973, 3–42. Zbl0285.18010MR382398
  16. [16] H. Gillet, Riemann-Roch theorems for higher algebraic K -theory, Adv. in Math.40 (1981), 203–289. Zbl0478.14010MR624666
  17. [17] H. Gillet, Universal cycle classes, Compositio Math.49 (1983), 3–49. Zbl0538.14009MR699858
  18. [18] H. Gillet, On the K -theory of surfaces with multiple curves and a conjecture of Bloch, Duke Math. J.51 (1984), 195–233. Zbl0557.14003MR744295
  19. [19] H. Gillet, Comparing algebraic and topological K -theory, in Higher algebraic K -theory: an overview, Lecture Notes in Math. 1491, Springer, 1992, 55–99. MR1175629
  20. [20] P. Griffiths & J. Harris, Principles of algebraic geometry, Wiley-Interscience, 1978. Zbl0836.14001MR507725
  21. [21] A. Grothendieck, La théorie des classes de Chern, Bull. Soc. Math. France86 (1958), 137–154. Zbl0091.33201MR116023
  22. [22] N. Hamida, Description explicite du régulateur de Borel, C. R. Acad. Sci. Paris Sér. I Math.330 (2000), 169–172. Zbl0947.19003MR1748302
  23. [23] A. Hatcher, Algebraic topology, Cambridge Univ. Press, 2002. Zbl1044.55001MR1867354
  24. [24] G. Hochschild & G. D. Mostow, Cohomology of Lie groups, Illinois J. Math.6 (1962), 367–401. Zbl0111.03302MR147577
  25. [25] M. Karoubi, Connexions, courbures et classes caractéristiques en K -théorie algébrique, in Current trends in algebraic topology, Part 1 (London, Ont., 1981), CMS Conf. Proc. 2, Amer. Math. Soc., 1982, 19–27. Zbl0553.18006MR686108
  26. [26] M. Karoubi, Homologie cyclique et régulateurs en K -théorie algébrique, C. R. Acad. Sci. Paris Sér. I Math.297 (1983), 557–560. Zbl0532.18009MR735692
  27. [27] M. Karoubi, Homologie cyclique et K -théorie, Astérisque149 (1987), 1–147. Zbl0648.18008MR913964
  28. [28] M. Karoubi, Théorie générale des classes caractéristiques secondaires, K -Theory 4 (1990), 55–87. Zbl0716.57018MR1076525
  29. [29] M. Karoubi, Sur la K -théorie multiplicative, in Cyclic cohomology and noncommutative geometry (Waterloo, ON, 1995), Fields Inst. Commun. 17, Amer. Math. Soc., 1997, 59–77. Zbl0889.19001MR1478702
  30. [30] J. W. Milnor & J. D. Stasheff, Characteristic classes, Annals of Math. Studies 76, Princeton Univ. Press, 1974. Zbl0298.57008MR440554
  31. [31] D. Quillen, Higher algebraic K -theory. I, in Algebraic K -theory, I: Higher K -theories (Proc. Conf., Battelle Memorial Inst., Seattle, Wash., 1972), Lecture Notes in Math. 341, Springer, 1973, 85–147. Zbl0292.18004MR338129
  32. [32] M. Rapoport, Comparison of the regulators of Beĭlinson and of Borel, in Beĭlinson’s conjectures on special values of L -functions, Perspect. Math. 4, Academic Press, 1988, 169–192. Zbl0667.14005MR944994
  33. [33] P. Schneider, Introduction to the Beĭlinson conjectures, in Beĭlinson’s conjectures on special values of L -functions, Perspect. Math. 4, Academic Press, 1988, 1–35. Zbl0673.14007MR944989
  34. [34] C. Soulé, Régulateurs, Séminaire Bourbaki, vol. 1984/85, exp. no 644, Astérisque 133-134 (1986), 237–253. Zbl0617.14008
  35. [35] C. Soulé, Connexions et classes caractéristiques de Beilinson, in Algebraic K -theory and algebraic number theory (Honolulu, HI, 1987), Contemp. Math. 83, Amer. Math. Soc., 1989, 349–376. Zbl0695.14003MR991985
  36. [36] G. Tamme, The relative Chern character and regulators, Thèse, Universität Regensburg, 2010. 
  37. [37] G. Tamme, Comparison of Karoubi’s regulator and the p -adic Borel regulator, J. K-Theory9 (2012), 579–600. Zbl1272.19003MR2955976
  38. [38] G. Tamme, Karoubi’s relative Chern character, the rigid syntomic regulator, and the Bloch-Kato exponential map, preprint arXiv:1111.4109. 
  39. [39] U. Tillmann, Relation of the van Est spectral sequence to K -theory and cyclic homology, Illinois J. Math.37 (1993), 589–608. Zbl0790.19002MR1226784
  40. [40] C. A. Weibel, Homotopy algebraic K -theory, in Algebraic K -theory and algebraic number theory (Honolulu, HI, 1987), Contemp. Math. 83, Amer. Math. Soc., 1989, 461–488. Zbl0669.18007MR991991

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.