Naturally reductive homogeneous spaces and generalized Heisenberg groups

F. Tricerri; L. Vanhecke

Compositio Mathematica (1984)

  • Volume: 52, Issue: 3, page 389-408
  • ISSN: 0010-437X

How to cite


Tricerri, F., and Vanhecke, L.. "Naturally reductive homogeneous spaces and generalized Heisenberg groups." Compositio Mathematica 52.3 (1984): 389-408. <>.

author = {Tricerri, F., Vanhecke, L.},
journal = {Compositio Mathematica},
keywords = {naturally reductive spaces; generalized Heisenberg groups},
language = {eng},
number = {3},
pages = {389-408},
publisher = {Martinus Nijhoff Publishers},
title = {Naturally reductive homogeneous spaces and generalized Heisenberg groups},
url = {},
volume = {52},
year = {1984},

AU - Tricerri, F.
AU - Vanhecke, L.
TI - Naturally reductive homogeneous spaces and generalized Heisenberg groups
JO - Compositio Mathematica
PY - 1984
PB - Martinus Nijhoff Publishers
VL - 52
IS - 3
SP - 389
EP - 408
LA - eng
KW - naturally reductive spaces; generalized Heisenberg groups
UR -
ER -


  1. [1] W. Ambrose and I.M. Singer: On homogeneous Riemannian manifolds. Duke Math. J.25 (1958) 647-669. Zbl0134.17802MR102842
  2. [2] R. Brown and A. Gray: Vector cross products. Comment. Math. Helv.42 (1967) 222-236. Zbl0155.35702MR222105
  3. [3] J.E. D'Atri and H.K. Nickerson: Divergence-preserving geodesic symmetries. J. Differential Geometry3 (1969) 467-476. Zbl0195.23604MR262969
  4. [4] J.E. D'Atri and H.K. Nickerson: Geodesic symmetries in spaces with special curvature tensor. J. Differential Geometry9 (1974) 251-262. Zbl0285.53019MR394520
  5. [5] J.E. D'Atri: Geodesic spheres and symmetries in naturally reductive homogeneous spaces. Michigan Math. J.22 (1975) 71-76. Zbl0317.53045MR372786
  6. [6] J.E. D'Atri: and W. Ziller: Naturally reductive metrics and Einstein metrics on compact Lie Groups. Mem. Amer. Math. Soc.18 (1979) 215. Zbl0404.53044MR519928
  7. [7] A. Gray: Riemannian manifolds with geodesic symmetries of order 3. J. Differential Geometry7 (1972) 343-369. Zbl0275.53026MR331281
  8. [8] A. Kaplan: Riemannian nilmanifolds attached to Clifford modules. Geometriae Dedicata1 (1981) 127-136. Zbl0495.53046MR621376
  9. [9] A. Kaplan: On the geometry of groups of Heisenberg type, to appear in Bull. London Math. Soc. Zbl0521.53048MR686346
  10. [10] S. Kobayashi and K. Nomizu: Foundations of differential geometry, I, II. Interscience Publishers, New York (1963 and 1969). Zbl0119.37502MR152974
  11. [11] O. Kowalski: Generalized symmetric spaces, Lecture Notes in Mathematics, 805. Springer-Verlag, Berlin/Heidelberg/ New York (1980). Zbl0431.53042MR579184
  12. [12] E. Kurcius: 6-dimensional generalized symmetric Riemannian spaces. Ph.D. Thesis, University of Katowice (1978). 
  13. [13] J. Szenthe: Sur la connection naturelle à torsion nulle. Acta Sci. Math. (Szeged) 38 (1976) 383-398. Zbl0321.53029MR431042
  14. [14] F. Tricerri and L. Vanhecke: Homogeneous structures on Riemannian manifolds, Lecture Note Series of the London Math. Soc., 83. Cambridge Univ. Press (1983). Zbl0509.53043MR712664
  15. [15] L. Vanhecke: Some solved and unsolved problems about harmonic and commutative spaces, to appear in Bull. Soc. Math. Belg. Zbl0518.53042MR683378
  16. [16] L. Vanhecke and T.J. Willmore: Interaction of tubes and spheres, to appear. Zbl0491.53034MR697328
  17. [17] J. Wolf: The geometry and structure of isotropy irreducible homogeneous spaces, Acta Math.120 (1968) 59-148. Zbl0157.52102MR223501

NotesEmbed ?


You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.


Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.