Spherical functions and spectral synthesis

Christopher Meaney

Compositio Mathematica (1985)

  • Volume: 54, Issue: 3, page 311-329
  • ISSN: 0010-437X

How to cite


Meaney, Christopher. "Spherical functions and spectral synthesis." Compositio Mathematica 54.3 (1985): 311-329. <http://eudml.org/doc/89704>.

author = {Meaney, Christopher},
journal = {Compositio Mathematica},
keywords = {sets of nonsynthesis; Fourier algebra; Gel'fand pair; connected semisimple Lie group},
language = {eng},
number = {3},
pages = {311-329},
publisher = {Martinus Nijhoff Publishers},
title = {Spherical functions and spectral synthesis},
url = {http://eudml.org/doc/89704},
volume = {54},
year = {1985},

AU - Meaney, Christopher
TI - Spherical functions and spectral synthesis
JO - Compositio Mathematica
PY - 1985
PB - Martinus Nijhoff Publishers
VL - 54
IS - 3
SP - 311
EP - 329
LA - eng
KW - sets of nonsynthesis; Fourier algebra; Gel'fand pair; connected semisimple Lie group
UR - http://eudml.org/doc/89704
ER -


  1. [1] K. Aomoto: Sur les transformations d'horisphere et les equations integrales qui s'y rattachent. J. Fac. Sci. Univ. of Tokyo14 (1967) 1-23. Zbl0177.41801MR222218
  2. [2] D. Barlet and J.L. Clerc: Le comportement à l'infini des fonctions de Bessel généralisées. I. Preprint, Institut Elie Cartan, Nancy, (Jan. 1981). 
  3. [3] F. Cazzaniga and C. Meaney: A local property of absolutely convergent Jacobi polynomial series. Tôhoku Math. J.34 (1982) 389-406. Zbl0492.42011MR676117
  4. [4] A.K. Chilana and K.A. Ross: Spectral synthesis in hypergroups. Pacific J. Math.76 (2) (1978) 313-328. Zbl0351.43009MR622041
  5. [5] J.L. Clerc: Le comportement à l'infini des fonctions de Bessel généralisées. II. Preprint. Institut Elie Cartan, Nancy, Jan. 1981. MR611408
  6. [6] J.J. Duistermaat, J.A.C. Kolk and V.S. Varadarajan: Functions, flows and oscillatory integrals on flag manifolds and conjugacy classes in real semisimple Lie groups. Comp. Math.49 (1983) 309-398. Zbl0524.43008MR707179
  7. [7] M. Eguchi and K. Kumahara: An Lp Fourier analysis on symmetric spaces. J. Functional Anal.47 (1982) 230-246. Zbl0493.43006MR664337
  8. [8] P. Eymard: L'algèbre de Fourier d'une groupe localement compact. Bull. Soc. Math. France.92 (1964) 181-236. Zbl0169.46403MR228628
  9. [9] P. Eymard: Algèbres Ap et convoluteurs de LP. Sém. Bourbaki no. 367 (1969). Zbl0264.43006
  10. [10] M. Flensted-Jensen: Paley-Wiener type theorems for a differential operator connected with symmetric spaces. Ark. Mat.10 (1972) 143-162. Zbl0233.42012MR318974
  11. [11] M. Flensted-Jensen and T. Koornwinder: The convolution structure for Jacobi function expansions. Ark. Mat.11 (1973) 245-262. Zbl0267.42009MR340938
  12. [12] M. Flensted-Jensen and T. Koornwinder: Jacobi funtions: the addition formula and the positivity of the dual convolution structure. Ark. Mat.17 (1979) 139-151. Zbl0409.33009MR543509
  13. [13] M. Flensted-Jensen and D.L. Ragozin: Spherical functions and Fourier transforms of L1-functions. Ann. Sci. Éc. Norm. Sup.6 (1973) 457-458. Zbl0293.22020MR364553
  14. [14] R. Gangolli: On the Placherel formula and the Paley-Wiener theorem for spherical functions on semisimple Lie groups. Ann. Math.93 (1971) 150-165. Zbl0232.43007MR289724
  15. [15] M. Gatesoupe: Caractérisation locale de la sous algèbre fermée des fonctions radiales de F L1(Rn). Ann. Inst. Fourier, Grenoble. 17 (1967) 93-107. Zbl0171.10201MR222559
  16. [16] E. Hahn: Asymptotik bei Jacobi-Polynomen und Jacobi-Functionen. Math. Z.171 (1980) 201-226. Zbl0411.33008MR575239
  17. [17] Harish-Chandra: Spherical functions on a semisimple Lie group, I. Amer. J. Math.80 (1958) 241-310. Zbl0093.12801MR94407
  18. [18] Y. Hasegawa: On the integrability of Fourier-Jacobi transforms. Ark. Mat.16 (1978) 127-139. Zbl0382.42009MR493151
  19. [19] S. Helgason: Differential geometry, Lie groups, and symmetric spaces. Academic Press, New York, San Francisco, London (1978). Zbl0451.53038MR514561
  20. [20] C. Herz: Spectral synthesis for the circle. Ann. of Math.68 (1958) 709-712. Zbl0084.09703MR100758
  21. [21] C. Herz: La rapport entre l'algèbre Ap d'un groupe et d'un sous-groupeC.R. Acad. Sci. Paris271 (1970) 244-246. Zbl0195.13803MR273428
  22. [22] C. Herz: Harmonic synthesis for subgroups. Ann. Inst. Fourier. Grenoble.23 (3) (1973) 91-123. Zbl0257.43007MR355482
  23. [23] B. Hoogenboom: Spherical functions and invariant differential operators on complex Grassmann manifolds. Ark. Mat.20 (1982) 69-85. Zbl0496.33010MR660126
  24. [24] W. Kirsch and D. Müller: On the synthesis problem for orbits of Lie groups in Rn. Ark. Mat.18 (1980) 145-155. Zbl0478.43004MR608333
  25. [25] T. Koornwinder: A new proof of a Paley-Wiener type theorem for the Jacobi transform. Ark. Mat.13 (1975) 145-158. Zbl0303.42022MR374832
  26. [26] F. Mayer-Lindenberg: Zur Dualitätstheorie symmetrischer Paare. J. für die reine und angew. Math.321 (1981) 36-52. Zbl0438.22004MR597978
  27. [27] C. Meaney: On the failure of spectral synthesis for compact semisimple Lie groups. J. Functional Anal.48 (1982) 43-57. Zbl0486.43005MR671314
  28. [28] M. Mizony: Contribution à l'analyse harmonique spherique. Publ. Dépt. Math. Lyon12-1 (1975) 61-108. Zbl0313.43019MR383011
  29. [29] M. Mizony: Transformation de Laplace-Jacobi, Preprint, Dépt. Math., Univ. Claude Bernard, Lyon (May 1981). 
  30. [30] F. Ricci: Local properties of the central Wiener algebra on the regular set of a compact Lie group. Bull. Sc. Math.101 (1977) 87-95. Zbl0358.43001MR481937
  31. [31] I.J. Schoenberg: Metric spaces and completely monotone functions. Ann. Math.39 (1938) 811-841. Zbl0019.41503MR1503439JFM64.0617.03
  32. [32] A. Schwartz: The smoothness of Hankel transforms. J. Math. Anal. Appl.28 (1969) 500-507. Zbl0167.12401MR249963
  33. [33] A. Schwartz: The structure of the algebra of Hankel transforms and the algebra of Hankel-Stieltjes transforms. Can. J. Math.23 (1971) 236-246. Zbl0214.13201MR273312
  34. [34] R.J. Stanton and P.A. Tomas: Expansions for spherical functions on noncompact symmetric spaces. Acta Math.140 (1978) 251-276. Zbl0411.43014MR511124
  35. [35] G. Warner: Harmónic analysis on semi-simple Lie groups I. Springer-Verlag, New York, Heidelberg, Berlin (1972). Zbl0265.22020MR498999
  36. [36] E.T. Whittaker and G.N. Watson: A course of modern analysis. Cambridge University Press (1927). MR1424469JFM45.0433.02

NotesEmbed ?


You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.


Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.