Geometric invariant theory for general algebraic groups

Amassa Fauntleroy

Compositio Mathematica (1985)

  • Volume: 55, Issue: 1, page 63-87
  • ISSN: 0010-437X

How to cite

top

Fauntleroy, Amassa. "Geometric invariant theory for general algebraic groups." Compositio Mathematica 55.1 (1985): 63-87. <http://eudml.org/doc/89710>.

@article{Fauntleroy1985,
author = {Fauntleroy, Amassa},
journal = {Compositio Mathematica},
keywords = {quotients for actions of arbitrary algebraic groups; Geometric invariant theory; proper stability},
language = {eng},
number = {1},
pages = {63-87},
publisher = {Martinus Nijhoff Publishers},
title = {Geometric invariant theory for general algebraic groups},
url = {http://eudml.org/doc/89710},
volume = {55},
year = {1985},
}

TY - JOUR
AU - Fauntleroy, Amassa
TI - Geometric invariant theory for general algebraic groups
JO - Compositio Mathematica
PY - 1985
PB - Martinus Nijhoff Publishers
VL - 55
IS - 1
SP - 63
EP - 87
LA - eng
KW - quotients for actions of arbitrary algebraic groups; Geometric invariant theory; proper stability
UR - http://eudml.org/doc/89710
ER -

References

top
  1. [1] A. Borel: Linear Algebraic Groups, Benjamin, New York (1969). Zbl0186.33201MR251042
  2. [2] J. Dieudonne and A. Grothendieck: Elements de géometric algébrique, Inst. Hautes Etudes Sci. Publ. Math., No. 11. Zbl0203.23301
  3. [3] A. Fauntleroy: Algebraic and Algebro-Geometric Interpretations of Weitzenboch's Theorem, J. Algebra62 (1980) 21-38. Zbl0457.14008
  4. [4] A. Fauntleroy: Categorical Quotients of Certain Algebraic Group Actions, Illinois J. Math.27 (1983) 115-124. Zbl0536.14032MR684546
  5. [5] A. Fauntleroy and A. Magid: Proper Ga-Actions, Duke J. Math.43 (1976) 723-729. Zbl0351.14026MR417196
  6. [6] A. Fauntleroy: Quasi-affine surfaces with Ga-section, Proc. A.M.S. 68 (1978) 265-270. Zbl0399.14031MR472839
  7. [7] R. Hartshorne: Introduction to Algebraic Geometry, Springer-Verlag (New York) 1976. MR463157
  8. [8] D. Knutson: Algebraic spaces, Springer Lecture Notes in Math. No. 203 (1971). Zbl0221.14001MR302647
  9. [9] A. Magid: Finite generation of class groups of rings of invariants, Proc. A.M.S. 60 (1976) 47-48. Zbl0344.13004MR427306
  10. [10] D. Mumford: Geometric Invariant Theory, Springer-Verlag, Berlin (1982). Zbl0504.14008MR719371
  11. [11] P. Newstead: Introduction to Moduli Problems and Orbit Spaces, Tata, New Delhi (1978). Zbl0411.14003MR546290
  12. [12] M. Rosenlicht: A Remark on Quotient Spaces, Ana. da Acad. Brasiliera de Ciencias35 (1963) 25-28. Zbl0123.13804MR171782
  13. [13] M. Rosenlicht: Nilpotent linear algebraic groups, Sem. Alg. Geom. Topol.1962/1963, vol. 1, Ist. Naz. Alta. Mat., Ediz. Cremonese, Rome (1965), pp. 133-152. MR188301
  14. [14] M. Rosenlicht: On, quotient varieties and affine embeddings of certain homogeneous spaces, T.A.M.S. 101 (1961) 211-221. Zbl0111.17902MR130878
  15. [15] P. Samuel: Lectures on unique factorization domains, Tata Inst., Bombay (1964). Zbl0184.06601MR214579
  16. [16] C.S. Seshadri: Quotient spaces modulo reductive algebraic groups, Annals of Math.95 (1972) 511-556. Zbl0241.14024MR309940
  17. [17] C.S. Seshadri: Theory of moduli, Proc. Symp. in Pure Math. 29 Alg. Ceom. A.M.S.263 (1975) 263-304. Zbl0321.14005MR396565
  18. [18] F. Catanese: Moduli and global period period mapping of surfaces with K2 = pg = 1: A counterexample to the Global Torelli problems, Comp. Math. 41 (1980) 401-414. Zbl0444.14008MR589089
  19. [19] S. Mori: Projective manifolds with ample tangent bundle, Annals Math. (1980) 593-606. Zbl0423.14006MR554387
  20. [20] S. Mori: On a generalization of complete intersections, J. Math. Kyoto Univ.15 (1975) 619-646. Zbl0332.14019MR393054

NotesEmbed ?

top

You must be logged in to post comments.