Geometric invariant theory for general algebraic groups

Amassa Fauntleroy

Compositio Mathematica (1985)

  • Volume: 55, Issue: 1, page 63-87
  • ISSN: 0010-437X

How to cite

top

Fauntleroy, Amassa. "Geometric invariant theory for general algebraic groups." Compositio Mathematica 55.1 (1985): 63-87. <http://eudml.org/doc/89710>.

@article{Fauntleroy1985,
author = {Fauntleroy, Amassa},
journal = {Compositio Mathematica},
keywords = {quotients for actions of arbitrary algebraic groups; Geometric invariant theory; proper stability},
language = {eng},
number = {1},
pages = {63-87},
publisher = {Martinus Nijhoff Publishers},
title = {Geometric invariant theory for general algebraic groups},
url = {http://eudml.org/doc/89710},
volume = {55},
year = {1985},
}

TY - JOUR
AU - Fauntleroy, Amassa
TI - Geometric invariant theory for general algebraic groups
JO - Compositio Mathematica
PY - 1985
PB - Martinus Nijhoff Publishers
VL - 55
IS - 1
SP - 63
EP - 87
LA - eng
KW - quotients for actions of arbitrary algebraic groups; Geometric invariant theory; proper stability
UR - http://eudml.org/doc/89710
ER -

References

top
  1. [1] A. Borel: Linear Algebraic Groups, Benjamin, New York (1969). Zbl0186.33201MR251042
  2. [2] J. Dieudonne and A. Grothendieck: Elements de géometric algébrique, Inst. Hautes Etudes Sci. Publ. Math., No. 11. Zbl0203.23301
  3. [3] A. Fauntleroy: Algebraic and Algebro-Geometric Interpretations of Weitzenboch's Theorem, J. Algebra62 (1980) 21-38. Zbl0457.14008
  4. [4] A. Fauntleroy: Categorical Quotients of Certain Algebraic Group Actions, Illinois J. Math.27 (1983) 115-124. Zbl0536.14032MR684546
  5. [5] A. Fauntleroy and A. Magid: Proper Ga-Actions, Duke J. Math.43 (1976) 723-729. Zbl0351.14026MR417196
  6. [6] A. Fauntleroy: Quasi-affine surfaces with Ga-section, Proc. A.M.S. 68 (1978) 265-270. Zbl0399.14031MR472839
  7. [7] R. Hartshorne: Introduction to Algebraic Geometry, Springer-Verlag (New York) 1976. MR463157
  8. [8] D. Knutson: Algebraic spaces, Springer Lecture Notes in Math. No. 203 (1971). Zbl0221.14001MR302647
  9. [9] A. Magid: Finite generation of class groups of rings of invariants, Proc. A.M.S. 60 (1976) 47-48. Zbl0344.13004MR427306
  10. [10] D. Mumford: Geometric Invariant Theory, Springer-Verlag, Berlin (1982). Zbl0504.14008MR719371
  11. [11] P. Newstead: Introduction to Moduli Problems and Orbit Spaces, Tata, New Delhi (1978). Zbl0411.14003MR546290
  12. [12] M. Rosenlicht: A Remark on Quotient Spaces, Ana. da Acad. Brasiliera de Ciencias35 (1963) 25-28. Zbl0123.13804MR171782
  13. [13] M. Rosenlicht: Nilpotent linear algebraic groups, Sem. Alg. Geom. Topol.1962/1963, vol. 1, Ist. Naz. Alta. Mat., Ediz. Cremonese, Rome (1965), pp. 133-152. MR188301
  14. [14] M. Rosenlicht: On, quotient varieties and affine embeddings of certain homogeneous spaces, T.A.M.S. 101 (1961) 211-221. Zbl0111.17902MR130878
  15. [15] P. Samuel: Lectures on unique factorization domains, Tata Inst., Bombay (1964). Zbl0184.06601MR214579
  16. [16] C.S. Seshadri: Quotient spaces modulo reductive algebraic groups, Annals of Math.95 (1972) 511-556. Zbl0241.14024MR309940
  17. [17] C.S. Seshadri: Theory of moduli, Proc. Symp. in Pure Math. 29 Alg. Ceom. A.M.S.263 (1975) 263-304. Zbl0321.14005MR396565
  18. [18] F. Catanese: Moduli and global period period mapping of surfaces with K2 = pg = 1: A counterexample to the Global Torelli problems, Comp. Math. 41 (1980) 401-414. Zbl0444.14008MR589089
  19. [19] S. Mori: Projective manifolds with ample tangent bundle, Annals Math. (1980) 593-606. Zbl0423.14006MR554387
  20. [20] S. Mori: On a generalization of complete intersections, J. Math. Kyoto Univ.15 (1975) 619-646. Zbl0332.14019MR393054

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.