The moduli and the global period mapping of surfaces with : a counterexample to the global Torelli problem
Compositio Mathematica (1980)
- Volume: 41, Issue: 3, page 401-414
- ISSN: 0010-437X
Access Full Article
topHow to cite
topReferences
top- [1] A. Andreotti: On a theorem of Torelli. Am. J. of Math., 80 (1958) 801-828. Zbl0084.17304MR102518
- [2] E. Bombieri: Canonical models of surfaces of general type. Publ. Math. I.H.E.S.42 (1973) 171-219. Zbl0259.14005MR318163
- [3] F. Catanese: Surfaces with K2 = pg = 1 and their period mapping, in Algebraic Geometry, Proc. Copenhagen 1978, Springer Lect. Notes in Math. n.732 (1979) 1-26. Zbl0423.14019MR555688
- [4] I. Dolgachev: Weighted projective varieties, (to appear). MR704986
- [5] F. Enriques: Le superficie algebriche di genere lineare p(1) = 2. Rend. Acc. Lincei, s. 5a, vol. VI (1897) 139-144. JFM28.0558.05
- [6] F. Enriques: Le superficie algebriche. Zanichelli, Bologna, (1949). Zbl0036.37102MR31770
- [7] D. Gieseker: Global moduli for surfaces of general type. Inv. Math.43 (1977) 233-282. Zbl0389.14006MR498596
- [8] P. Griffiths: Periods of integrals on algebraic manifolds, I, II. Am. J. of Math.90 (1968) 568-626, 805-865. Zbl0183.25501
- [9] P. Griffiths: Periods of integrals on algebraic manifolds: summary of main results and discussion of open problems, Bull. Am. Math. Soc.76 (1970) 228-296. Zbl0214.19802MR258824
- [10] P. Griffiths and W. Schmid: Recent developments in Hodge theory: a discussion of techniques and results. Proc. Int. Coll. Bombay, (1973), Oxford Univ. Press. Zbl0355.14003MR419850
- [11] E. Horikawa: On the periods of Enriques surfaces, I, II. Math. Ann. vol.234, 235 (1978) 73-88, 217-246. Zbl0412.14015MR491725
- [12] K. Kodaira: Pluricanonical systems on algebraic surfaces of general type. J. Math. Soc. Japan20 (1968) 170-192. Zbl0157.27704MR224613
- [13] M. Kuranishi: New proof for the existence of locally complete families of complex structures. Proc. Conf. Compl. Analysis, Minneapolis, pp. 142-154, Springer (1965). Zbl0144.21102MR176496
- [14] V.I. Kynef: An example of a simply connected surface of general type for which the local Torelli theorem does not hold. C.R. Ac. Bulg. Sc.30, n.3 (1977) 323-325. Zbl0363.14005MR441981
- [15] S. Mori: On a generalization of complete intersections. J. Math. Kyoto Univ.15, n.3 (1975) 619-646. Zbl0332.14019MR393054
- [16] D. Mumford: The canonical ring of an algebraic surface. Annals of Math.76 (1962) 612-615.
- [17] C. Peters: The local Torelli theorem, a review of known results in Variètès analytiques compactes, Nice1977. Springer Lect. Notes in Math.683 (1978) 62-73. Zbl0399.32017MR517521
- [18] I.I. Piatetski Shapiro and I.R. Shafarevitch: Theorem of Torelli on algebraic surfaces of type K3, Math. USSR Izvestija 5 (1971) 547-588. Zbl0253.14006
- [19] G.N. Tjurina: Resolution of singularities of flat deformations of rational double points. Funk. Anal. i Pril. 4, n.1, pp. 77-83. Zbl0221.32008MR267129
- [20] S. Usui: Local Torelli theorem for some non-singular weighted complete intersections. Proceed. Internat. Symposium Algebraic Geometry, Kyoto, 1977. Ed. M. Nagata. Kinokuniya Book-Store, Tokyo, Japan, 1978: pp. 723-734. Zbl0418.14005MR578884
- [21] J.J. Wavrik: Obstructions to the existence of a space of moduli, Global Analysis. Prin. Math. Series n.29 (1969) 403-414. Zbl0191.38003MR254882
- [22] A. Weil: Zum Beweis des Torellischen Satz. Göttingen Nachrichten (1957) 33-53. Zbl0079.37002MR89483
Citations in EuDML Documents
top- Amassa Fauntleroy, Geometric invariant theory for general algebraic groups
- Sampei Usui, Torelli theorem for surfaces with and ample and with certain type of automorphism
- Ron Donagi, Generic torelli for projective hypersurfaces
- Loring Tu, Macaulay's theorem and local Torelli for weighted hypersurfaces
- Sampei Usui, Variation of mixed Hodge structures arising from family of logarithmic deformations
- Arnaud Beauville, Le problème de Torelli
- James Carlson, Mark Green, Phillip Griffiths, Joe Harris, Infinitesimal variations of hodge structure (I)