The moduli and the global period mapping of surfaces with K 2 = p g = 1 : a counterexample to the global Torelli problem

F. Catanese

Compositio Mathematica (1980)

  • Volume: 41, Issue: 3, page 401-414
  • ISSN: 0010-437X

How to cite

top

Catanese, F.. "The moduli and the global period mapping of surfaces with $K^2 = p_g = 1$ : a counterexample to the global Torelli problem." Compositio Mathematica 41.3 (1980): 401-414. <http://eudml.org/doc/89464>.

@article{Catanese1980,
author = {Catanese, F.},
journal = {Compositio Mathematica},
keywords = {moduli of surfaces; global period mapping; counterexample to global Torelli problem; surfaces of general type; weighted complete intersections; coarse moduli variety},
language = {eng},
number = {3},
pages = {401-414},
publisher = {Sijthoff et Noordhoff International Publishers},
title = {The moduli and the global period mapping of surfaces with $K^2 = p_g = 1$ : a counterexample to the global Torelli problem},
url = {http://eudml.org/doc/89464},
volume = {41},
year = {1980},
}

TY - JOUR
AU - Catanese, F.
TI - The moduli and the global period mapping of surfaces with $K^2 = p_g = 1$ : a counterexample to the global Torelli problem
JO - Compositio Mathematica
PY - 1980
PB - Sijthoff et Noordhoff International Publishers
VL - 41
IS - 3
SP - 401
EP - 414
LA - eng
KW - moduli of surfaces; global period mapping; counterexample to global Torelli problem; surfaces of general type; weighted complete intersections; coarse moduli variety
UR - http://eudml.org/doc/89464
ER -

References

top
  1. [1] A. Andreotti: On a theorem of Torelli. Am. J. of Math., 80 (1958) 801-828. Zbl0084.17304MR102518
  2. [2] E. Bombieri: Canonical models of surfaces of general type. Publ. Math. I.H.E.S.42 (1973) 171-219. Zbl0259.14005MR318163
  3. [3] F. Catanese: Surfaces with K2 = pg = 1 and their period mapping, in Algebraic Geometry, Proc. Copenhagen 1978, Springer Lect. Notes in Math. n.732 (1979) 1-26. Zbl0423.14019MR555688
  4. [4] I. Dolgachev: Weighted projective varieties, (to appear). MR704986
  5. [5] F. Enriques: Le superficie algebriche di genere lineare p(1) = 2. Rend. Acc. Lincei, s. 5a, vol. VI (1897) 139-144. JFM28.0558.05
  6. [6] F. Enriques: Le superficie algebriche. Zanichelli, Bologna, (1949). Zbl0036.37102MR31770
  7. [7] D. Gieseker: Global moduli for surfaces of general type. Inv. Math.43 (1977) 233-282. Zbl0389.14006MR498596
  8. [8] P. Griffiths: Periods of integrals on algebraic manifolds, I, II. Am. J. of Math.90 (1968) 568-626, 805-865. Zbl0183.25501
  9. [9] P. Griffiths: Periods of integrals on algebraic manifolds: summary of main results and discussion of open problems, Bull. Am. Math. Soc.76 (1970) 228-296. Zbl0214.19802MR258824
  10. [10] P. Griffiths and W. Schmid: Recent developments in Hodge theory: a discussion of techniques and results. Proc. Int. Coll. Bombay, (1973), Oxford Univ. Press. Zbl0355.14003MR419850
  11. [11] E. Horikawa: On the periods of Enriques surfaces, I, II. Math. Ann. vol.234, 235 (1978) 73-88, 217-246. Zbl0412.14015MR491725
  12. [12] K. Kodaira: Pluricanonical systems on algebraic surfaces of general type. J. Math. Soc. Japan20 (1968) 170-192. Zbl0157.27704MR224613
  13. [13] M. Kuranishi: New proof for the existence of locally complete families of complex structures. Proc. Conf. Compl. Analysis, Minneapolis, pp. 142-154, Springer (1965). Zbl0144.21102MR176496
  14. [14] V.I. Kynef: An example of a simply connected surface of general type for which the local Torelli theorem does not hold. C.R. Ac. Bulg. Sc.30, n.3 (1977) 323-325. Zbl0363.14005MR441981
  15. [15] S. Mori: On a generalization of complete intersections. J. Math. Kyoto Univ.15, n.3 (1975) 619-646. Zbl0332.14019MR393054
  16. [16] D. Mumford: The canonical ring of an algebraic surface. Annals of Math.76 (1962) 612-615. 
  17. [17] C. Peters: The local Torelli theorem, a review of known results in Variètès analytiques compactes, Nice1977. Springer Lect. Notes in Math.683 (1978) 62-73. Zbl0399.32017MR517521
  18. [18] I.I. Piatetski Shapiro and I.R. Shafarevitch: Theorem of Torelli on algebraic surfaces of type K3, Math. USSR Izvestija 5 (1971) 547-588. Zbl0253.14006
  19. [19] G.N. Tjurina: Resolution of singularities of flat deformations of rational double points. Funk. Anal. i Pril. 4, n.1, pp. 77-83. Zbl0221.32008MR267129
  20. [20] S. Usui: Local Torelli theorem for some non-singular weighted complete intersections. Proceed. Internat. Symposium Algebraic Geometry, Kyoto, 1977. Ed. M. Nagata. Kinokuniya Book-Store, Tokyo, Japan, 1978: pp. 723-734. Zbl0418.14005MR578884
  21. [21] J.J. Wavrik: Obstructions to the existence of a space of moduli, Global Analysis. Prin. Math. Series n.29 (1969) 403-414. Zbl0191.38003MR254882
  22. [22] A. Weil: Zum Beweis des Torellischen Satz. Göttingen Nachrichten (1957) 33-53. Zbl0079.37002MR89483

Citations in EuDML Documents

top
  1. Amassa Fauntleroy, Geometric invariant theory for general algebraic groups
  2. Sampei Usui, Torelli theorem for surfaces with p g = c 1 2 = 1 and K ample and with certain type of automorphism
  3. Ron Donagi, Generic torelli for projective hypersurfaces
  4. Loring Tu, Macaulay's theorem and local Torelli for weighted hypersurfaces
  5. Sampei Usui, Variation of mixed Hodge structures arising from family of logarithmic deformations
  6. Arnaud Beauville, Le problème de Torelli
  7. James Carlson, Mark Green, Phillip Griffiths, Joe Harris, Infinitesimal variations of hodge structure (I)

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.