Duality theorems for Γ -extensions of algebraic number fields

Kay Wingberg

Compositio Mathematica (1985)

  • Volume: 55, Issue: 3, page 333-381
  • ISSN: 0010-437X

How to cite

top

Wingberg, Kay. "Duality theorems for $\Gamma $-extensions of algebraic number fields." Compositio Mathematica 55.3 (1985): 333-381. <http://eudml.org/doc/89725>.

@article{Wingberg1985,
author = {Wingberg, Kay},
journal = {Compositio Mathematica},
keywords = {duality theorems; -extensions; Frobenius automorphism; cyclotomic -extension; totally real number field; CM-field; Iwasawa main-conjecture; functional equation for characteristic polynomial; local factors; -invariant pairings; Iwasawa modules; p-adic zeta-function; Riemann-Hurwitz formula},
language = {eng},
number = {3},
pages = {333-381},
publisher = {Martinus Nijhoff Publishers},
title = {Duality theorems for $\Gamma $-extensions of algebraic number fields},
url = {http://eudml.org/doc/89725},
volume = {55},
year = {1985},
}

TY - JOUR
AU - Wingberg, Kay
TI - Duality theorems for $\Gamma $-extensions of algebraic number fields
JO - Compositio Mathematica
PY - 1985
PB - Martinus Nijhoff Publishers
VL - 55
IS - 3
SP - 333
EP - 381
LA - eng
KW - duality theorems; -extensions; Frobenius automorphism; cyclotomic -extension; totally real number field; CM-field; Iwasawa main-conjecture; functional equation for characteristic polynomial; local factors; -invariant pairings; Iwasawa modules; p-adic zeta-function; Riemann-Hurwitz formula
UR - http://eudml.org/doc/89725
ER -

References

top
  1. [1] N. Bourbaki: Algebre commutative. Paris: Herman (1969). 
  2. [2] J. Coates: On K2 and some classical conjectures in algebraic number theory. Ann. of math.95 (1972) 99-116. Zbl0245.12005MR360523
  3. [3] J. Coates: K - theory and Iwasawa's analogue of the Jacobian. Algebraic K-Theory, II (Seattle1972). Springer Lecture notes in maths. 342 (1973) 502-520. Zbl0284.12006MR406977
  4. [4] J. Coates, S. Lichtenbaum, S. On l-adic zeta functions. Ann. of Math.98 (1973) 498-550. Zbl0279.12005MR330107
  5. [5] R. Greenberg, On the Iwasawa invariants of totally real number fields. Amer. J. math.98 (1976) 263-284. Zbl0334.12013MR401702
  6. [6] R. Greenberg, On the structure of certain Galois groups. Invent math.47 (1978) 85-99. Zbl0403.12004MR504453
  7. [7] K. Grunberg, Cohomological topics in group theory. Springer Lecture notes in maths. 143 (1970). Zbl0205.32701MR279200
  8. [8] K. Haberland, Galois cohomology of algebraic number fields. Berlin: Deutscher Verlag der Wissenschaften (1978). Zbl0418.12004MR519872
  9. [9] K. Iwasawa, On Z l-extensions of algebraic number fields. Ann. of math.98 (1973) 246-326. Zbl0285.12008MR349627
  10. [10] K. Iwasawa, On the μ-invariants of Z l-extensions. Number theory, algebraic geometry and commutative algebra (in honor of Y. Akizuki). Kinokuniya. Tokyo (1973) 1-11. Zbl0281.12005
  11. [11] K. Iwasawa, Riemann-Hurwitz formula and p-adic Galois representations for number fields. Tôhoku Math. J.33 (1981) 263-288. Zbl0468.12004MR624610
  12. [12] A.V. Jakovlev, The Galois group of the algebraic closure of a local field. Math. USSR - Izv.2 (1968) 1231-1269. Zbl0194.35401MR236155
  13. [13] U. Jannsen, Über die Galoismodulstruktur und die absolute Galoisgruppe p-adischer Zahlkörper. Dissertation. Hamburg (1980). Zbl0535.12012
  14. [14 U. Jannsen, Über Galoisgruppen lokaler Körper. Invent. math.70 (1982) 53-69. Zbl0534.12009MR679773
  15. [15] U. Jannsen; K. Wingberg, Die p-Vervollständigung der multiplikativen Gruppe einer p-Erweiterung eines irregulären p-adischen Zahlkörpers. J. für reine angew. Math.307/308, (1979) 399-410. Zbl0396.12015MR534234
  16. [16] Y. Kida, l-extensions of CM-fields and cyclotomic invariants. J. Number theory12 (1980) 519-528. Zbl0455.12007MR599821
  17. [17] L. Kuz'min, Some duality theorems for cyclotomic Γ-extensions over algebraic number fields of CM-typeMath. USSR-Izv.14 (1980) 441-498. Zbl0448.12007
  18. [18] S. Lang.Cyclotomic fields. Graduate texts in maths. New York-Heidelberg- Berlin: Springer (1978). Zbl0395.12005MR485768
  19. [19] T. Nakayama, On modules of trivial cohomology over a finite group. Illinois J. Math.1 (1957) 36-43. Zbl0207.33601MR84014
  20. [20] O. Neumann, On p-closed number fields and an analogue of Riemann's existence theorem. In: A. Pröhlich (ed.) "Algebraic number fields ". London: Acad. press (1977) 625-647. Zbl0393.12015MR453698
  21. [21] P. Schneider, Über gewisse Galoiscohomologiegruppen. Math. Zeitschrift168 (1979) 181-205. Zbl0421.12024MR544704
  22. [22] P. Schneider, Die Galoiscohomologie p-adischer Darstellungen über Zahlkörpern. Dissertation. Regensburg (1980). 
  23. [23] J-P. Serre, Cohomologie galoisienne. Lecture notes in maths.5 (1964). Zbl0136.02801MR201444
  24. [24] R.G. Swan, Induced representaions and projectives modules. Ann. of Math.71 (1960) 552-579. Zbl0104.25102MR138688
  25. [25] K. Wingberg, Freie Produktzerlegungen von Galoisgruppen und Iwasawa-Invarianten für p-Erweiterungen von Q. J. für reine und angewandte Math.341 (1983) 111-129. Zbl0501.12014MR697311
  26. [26] J.P. Wintenberger, Structure galoisienne de limites projectives d'unités loales. Compos. Math.42 (1980) 89-104. Zbl0414.12008MR594484

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.