Duality theorems for -extensions of algebraic number fields
Compositio Mathematica (1985)
- Volume: 55, Issue: 3, page 333-381
- ISSN: 0010-437X
Access Full Article
topHow to cite
topWingberg, Kay. "Duality theorems for $\Gamma $-extensions of algebraic number fields." Compositio Mathematica 55.3 (1985): 333-381. <http://eudml.org/doc/89725>.
@article{Wingberg1985,
author = {Wingberg, Kay},
journal = {Compositio Mathematica},
keywords = {duality theorems; -extensions; Frobenius automorphism; cyclotomic -extension; totally real number field; CM-field; Iwasawa main-conjecture; functional equation for characteristic polynomial; local factors; -invariant pairings; Iwasawa modules; p-adic zeta-function; Riemann-Hurwitz formula},
language = {eng},
number = {3},
pages = {333-381},
publisher = {Martinus Nijhoff Publishers},
title = {Duality theorems for $\Gamma $-extensions of algebraic number fields},
url = {http://eudml.org/doc/89725},
volume = {55},
year = {1985},
}
TY - JOUR
AU - Wingberg, Kay
TI - Duality theorems for $\Gamma $-extensions of algebraic number fields
JO - Compositio Mathematica
PY - 1985
PB - Martinus Nijhoff Publishers
VL - 55
IS - 3
SP - 333
EP - 381
LA - eng
KW - duality theorems; -extensions; Frobenius automorphism; cyclotomic -extension; totally real number field; CM-field; Iwasawa main-conjecture; functional equation for characteristic polynomial; local factors; -invariant pairings; Iwasawa modules; p-adic zeta-function; Riemann-Hurwitz formula
UR - http://eudml.org/doc/89725
ER -
References
top- [1] N. Bourbaki: Algebre commutative. Paris: Herman (1969).
- [2] J. Coates: On K2 and some classical conjectures in algebraic number theory. Ann. of math.95 (1972) 99-116. Zbl0245.12005MR360523
- [3] J. Coates: K - theory and Iwasawa's analogue of the Jacobian. Algebraic K-Theory, II (Seattle1972). Springer Lecture notes in maths. 342 (1973) 502-520. Zbl0284.12006MR406977
- [4] J. Coates, S. Lichtenbaum, S. On l-adic zeta functions. Ann. of Math.98 (1973) 498-550. Zbl0279.12005MR330107
- [5] R. Greenberg, On the Iwasawa invariants of totally real number fields. Amer. J. math.98 (1976) 263-284. Zbl0334.12013MR401702
- [6] R. Greenberg, On the structure of certain Galois groups. Invent math.47 (1978) 85-99. Zbl0403.12004MR504453
- [7] K. Grunberg, Cohomological topics in group theory. Springer Lecture notes in maths. 143 (1970). Zbl0205.32701MR279200
- [8] K. Haberland, Galois cohomology of algebraic number fields. Berlin: Deutscher Verlag der Wissenschaften (1978). Zbl0418.12004MR519872
- [9] K. Iwasawa, On Z l-extensions of algebraic number fields. Ann. of math.98 (1973) 246-326. Zbl0285.12008MR349627
- [10] K. Iwasawa, On the μ-invariants of Z l-extensions. Number theory, algebraic geometry and commutative algebra (in honor of Y. Akizuki). Kinokuniya. Tokyo (1973) 1-11. Zbl0281.12005
- [11] K. Iwasawa, Riemann-Hurwitz formula and p-adic Galois representations for number fields. Tôhoku Math. J.33 (1981) 263-288. Zbl0468.12004MR624610
- [12] A.V. Jakovlev, The Galois group of the algebraic closure of a local field. Math. USSR - Izv.2 (1968) 1231-1269. Zbl0194.35401MR236155
- [13] U. Jannsen, Über die Galoismodulstruktur und die absolute Galoisgruppe p-adischer Zahlkörper. Dissertation. Hamburg (1980). Zbl0535.12012
- [14 U. Jannsen, Über Galoisgruppen lokaler Körper. Invent. math.70 (1982) 53-69. Zbl0534.12009MR679773
- [15] U. Jannsen; K. Wingberg, Die p-Vervollständigung der multiplikativen Gruppe einer p-Erweiterung eines irregulären p-adischen Zahlkörpers. J. für reine angew. Math.307/308, (1979) 399-410. Zbl0396.12015MR534234
- [16] Y. Kida, l-extensions of CM-fields and cyclotomic invariants. J. Number theory12 (1980) 519-528. Zbl0455.12007MR599821
- [17] L. Kuz'min, Some duality theorems for cyclotomic Γ-extensions over algebraic number fields of CM-typeMath. USSR-Izv.14 (1980) 441-498. Zbl0448.12007
- [18] S. Lang.Cyclotomic fields. Graduate texts in maths. New York-Heidelberg- Berlin: Springer (1978). Zbl0395.12005MR485768
- [19] T. Nakayama, On modules of trivial cohomology over a finite group. Illinois J. Math.1 (1957) 36-43. Zbl0207.33601MR84014
- [20] O. Neumann, On p-closed number fields and an analogue of Riemann's existence theorem. In: A. Pröhlich (ed.) "Algebraic number fields ". London: Acad. press (1977) 625-647. Zbl0393.12015MR453698
- [21] P. Schneider, Über gewisse Galoiscohomologiegruppen. Math. Zeitschrift168 (1979) 181-205. Zbl0421.12024MR544704
- [22] P. Schneider, Die Galoiscohomologie p-adischer Darstellungen über Zahlkörpern. Dissertation. Regensburg (1980).
- [23] J-P. Serre, Cohomologie galoisienne. Lecture notes in maths.5 (1964). Zbl0136.02801MR201444
- [24] R.G. Swan, Induced representaions and projectives modules. Ann. of Math.71 (1960) 552-579. Zbl0104.25102MR138688
- [25] K. Wingberg, Freie Produktzerlegungen von Galoisgruppen und Iwasawa-Invarianten für p-Erweiterungen von Q. J. für reine und angewandte Math.341 (1983) 111-129. Zbl0501.12014MR697311
- [26] J.P. Wintenberger, Structure galoisienne de limites projectives d'unités loales. Compos. Math.42 (1980) 89-104. Zbl0414.12008MR594484
Citations in EuDML Documents
top- Kuniaki Horie, CM-fields with all roots of unity
- Kay Wingberg, On Demuskin groups with involution
- Masakazu Yamagishi, A note on free pro--extensions of algebraic number fields
- Thong Nguyen-Quang-Do, Sur la -torsion de certains modules galoisiens
- Jean-Robert Belliard, Thong Nguyen Quang Do, Formules de classes pour les corps abéliens réels
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.