On spherical space forms with meta-cyclic fundamental group which are isospectral but not equivariant cobordant

Peter B. Gilkey

Compositio Mathematica (1985)

  • Volume: 56, Issue: 2, page 171-200
  • ISSN: 0010-437X

How to cite

top

Gilkey, Peter B.. "On spherical space forms with meta-cyclic fundamental group which are isospectral but not equivariant cobordant." Compositio Mathematica 56.2 (1985): 171-200. <http://eudml.org/doc/89734>.

@article{Gilkey1985,
author = {Gilkey, Peter B.},
journal = {Compositio Mathematica},
keywords = {isospectral manifolds; isometric manifolds; spherical space forms},
language = {eng},
number = {2},
pages = {171-200},
publisher = {Martinus Nijhoff Publishers},
title = {On spherical space forms with meta-cyclic fundamental group which are isospectral but not equivariant cobordant},
url = {http://eudml.org/doc/89734},
volume = {56},
year = {1985},
}

TY - JOUR
AU - Gilkey, Peter B.
TI - On spherical space forms with meta-cyclic fundamental group which are isospectral but not equivariant cobordant
JO - Compositio Mathematica
PY - 1985
PB - Martinus Nijhoff Publishers
VL - 56
IS - 2
SP - 171
EP - 200
LA - eng
KW - isospectral manifolds; isometric manifolds; spherical space forms
UR - http://eudml.org/doc/89734
ER -

References

top
  1. [1] M.F. Atiyah, V.K. Patodi and I.M. Singe: Spectral asymmetry and Riemannian geometry. III. Math. Proc. Camb. Phil. Soc.79 (1976) 71-99. Zbl0325.58015MR397799
  2. [2] G. Derham: Complexes a automorphismes et homeomorphie differentiable, Annales de L'institut Fourier2 (1950) 51-67. Zbl0043.17601MR43468
  3. [3] H. Donnelly.Eta invariants for G-spaces. Indiana Univ Math J27 (1978) 889-918. Zbl0402.58006MR511246
  4. [4] D. Epstein: Natural tensors on Riemannian manifods. J. Diff. Geo10 (1973) 631-646. Zbl0321.53039MR415531
  5. [5] P. Gilkey: The eta invariant and the K-theory of odd dimensional spherical space forms. Inventiones Math.76, 421-453 (1984). Zbl0547.58032MR746537
  6. [6] P. Gilkey: The eta invariant for even dimensional PINc manifolds (to appear). Zbl0602.58041
  7. [7] P. Gilkey: Invariance theory, the heat equation, and the Atiyah - Singer theorem. Publish or Perish Press (1985). Zbl0565.58035
  8. [8] F. Hirzebruch: Topological methods in algebraic geometry, Springer-Verlag (1966). Zbl0138.42001MR202713
  9. [9] F. Hirzebruch and D. Zagier: The Atiyah-Singer theorem and elementary number theory. Publish or Perish Press (1974). Zbl0288.10001MR650832
  10. [10] A. Ikeda: On spherical space forms which are isospectral but not isometric. J. Math. Soc. Japan35 (1983) 437-444. Zbl0507.58050MR702768
  11. [11] R. Millman: Manifolds with the same spectrum. AMS monthly90 (1983) 553-555. Zbl0518.53050MR1540264
  12. [12] J. Milnor: Eigenvalues of the Laplace operator on certain manifolds. Proc. Nat. Acad. Sci. USA51 (1964) 542. Zbl0124.31202MR162204
  13. [13] J. Millson: Chern-Simons invariants of constant curvature manifolds. Ph.D. Thesis Univerity of California (Berkeley) (1973). 
  14. [14] P. Stredder: Natural differential operators on Riemannian manifolds and representations of the orthogonal and special orthogonal group. J. Diff. Geo.10 (1975) 647-660. Zbl0318.53046MR415692
  15. [15] M.V. Vigneras: Varietes Riemanniennes Isospectrales et non isometriques, Ann. of Math.112 (1980) 21-32. Zbl0445.53026MR584073
  16. [16] J.A. Wolf: Spaces of constant curvature. Publish or Perish Press (1972). Zbl0281.53034

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.