Continuous fibrations and inverse limits of toposes
Compositio Mathematica (1986)
- Volume: 58, Issue: 1, page 45-72
- ISSN: 0010-437X
Access Full Article
topHow to cite
topReferences
top- [1] M. Barr and R. Diaconescu: Atomic toposes. J. Pure and Applied Algebra17 (1980) 1-24. Zbl0429.18006MR560782
- [2] M. Barr and R. Paré: Molecular toposes. J. Pure and Applied Algebra17 (1980) 27-152. Zbl0436.18002MR567064
- [3] R. Diaconescu: Grothendieck toposes have boolean points: a new proof. Comm. in Algebra4 (1976) 723-729. Zbl0358.18011MR414658
- [4] P. Freyd: All topoi are localic, or Why permutation models prevail, unpublished typescript (1979).
- [5] A. Grothendieck and J.L. Verdier: Théorie des topos et cohomologie étale des Schémas, SGA 4(2), Exposé VI. Springer Lecture notes270 (1972). Zbl0237.00012MR463174
- [6] G.F. Van Der Hoeven and I. Moerdijk: On choice sequences determined by spreads. J. of Symbolic Logic49 (1984) 908-916. Zbl0587.03044MR758942
- [7] A. Joyal and M. Tierney: An extension of the Galois theory of Grothendieck. Memoir Amer. Math. Soc.309 (1984). Zbl0541.18002MR756176
- [8] P.T. Johnstone: Open maps of toposes. Manuscripta Math.31 (1980) 217-247. Zbl0433.18002MR576498
- [9] P.T. Johnstone: Factorisation theorems for geometric morphisms, I. Cah. top. et géom. diff.22 (1981) 3-17. Zbl0454.18007MR609154
- [10] I. Moerdijk and G.E. Reyes: Smooth spaces versus continuous spaces in models for SDG. J. Pure and Applied Algebra32 (1984) 143-176. Zbl0535.18003MR741963