Factorization theorems for geometric morphisms, I

P. T. Johnstone

Cahiers de Topologie et Géométrie Différentielle Catégoriques (1981)

  • Volume: 22, Issue: 1, page 3-17
  • ISSN: 1245-530X

How to cite

top

Johnstone, P. T.. "Factorization theorems for geometric morphisms, I." Cahiers de Topologie et Géométrie Différentielle Catégoriques 22.1 (1981): 3-17. <http://eudml.org/doc/91250>.

@article{Johnstone1981,
author = {Johnstone, P. T.},
journal = {Cahiers de Topologie et Géométrie Différentielle Catégoriques},
keywords = {factorization structure; category of toposes and geometric morphisms; hyperconnected morphisms},
language = {eng},
number = {1},
pages = {3-17},
publisher = {Dunod éditeur, publié avec le concours du CNRS},
title = {Factorization theorems for geometric morphisms, I},
url = {http://eudml.org/doc/91250},
volume = {22},
year = {1981},
}

TY - JOUR
AU - Johnstone, P. T.
TI - Factorization theorems for geometric morphisms, I
JO - Cahiers de Topologie et Géométrie Différentielle Catégoriques
PY - 1981
PB - Dunod éditeur, publié avec le concours du CNRS
VL - 22
IS - 1
SP - 3
EP - 17
LA - eng
KW - factorization structure; category of toposes and geometric morphisms; hyperconnected morphisms
UR - http://eudml.org/doc/91250
ER -

References

top
  1. 1 M. Barr& R. Diaconescu, Atomic toposes, J. Pure Appl. Algebra17 (1980) 1-24. Zbl0429.18006MR560782
  2. 2 J. Benabou, Introduction to bicategories, Lecture Notes in Math.47, Springer (1967), 1-77. MR220789
  3. 3 A. Błaszczyk, A factorization theorem and its application to extremally disconnected resolutions, Colloq. Math.28 (1973), 33- 40. Zbl0266.54002
  4. 4 M.J. Brockway, D. Phil.Thesis, Oxford University, 1980. 
  5. 5 P.J. Collins, Concordant mappings and the concordant-dissonant factorization of an arbitrary continuous function, Proc. A. M. S, 27 (1971), 587- 591. Zbl0212.27401MR276933
  6. 6 M. Coste, La démonstration de Diaconescu du théorème de Barr, Séminaire Bénabou, Université Paris-Nord1975 (unpublished). 
  7. 7 R. Dyckoff, Factorization theorems and projective spaces in Topology, Math. Zeit, 127 (1972), 256- 264. Zbl0226.54009MR312452
  8. 8 P. Freyd, The axiom of choice, J. Pure Appl, Alg. (to appear). Zbl0446.03042MR593250
  9. 9 P. Freyd, All topoi are localic, or, Why permutation models prevail. Preprint, University of Pennsylvania, 1979. Zbl0611.18003MR894391
  10. 10 J.R. Isbell, Subobjects, adequacy, completeness and categories of algebras, Rozprawy Mat, 36 (1964). Zbl0133.26703MR163939
  11. 11 P.T. Johnstone, Topos theory, Academic Press, London, 1977. Zbl0368.18001MR470019
  12. 12 P.T. Johnstone, Factorization and pullback theorems for localic geometric morphisms, Univ. Cath, de Louvain, Sém. Math, Pures, Rapport 79 (1979). 
  13. 13 P.T. Johnstone, Open maps of toposes, Man. Math, 31 (1980), 217-247. Zbl0433.18002MR576498
  14. 14 S. Mac Lane, Duality for groups, Bull. A. M. S.56 (1950), 485-516. Zbl0045.29905MR49192
  15. 15 R. Street & R.F.C. Walters, The comprehensive factorization of a functor, Bull. A.M.S.79 (1973), 936-941. Zbl0274.18001MR346027

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.