The infinitesimal M. Noether theorem for singularities
Compositio Mathematica (1986)
- Volume: 59, Issue: 1, page 41-50
- ISSN: 0010-437X
Access Full Article
topHow to cite
topFlenner, Hubert. "The infinitesimal M. Noether theorem for singularities." Compositio Mathematica 59.1 (1986): 41-50. <http://eudml.org/doc/89780>.
@article{Flenner1986,
author = {Flenner, Hubert},
journal = {Compositio Mathematica},
keywords = {factoriality of isolated Gorenstein-singularities; splitting of normal bundle sequences},
language = {eng},
number = {1},
pages = {41-50},
publisher = {Martinus Nijhoff Publishers},
title = {The infinitesimal M. Noether theorem for singularities},
url = {http://eudml.org/doc/89780},
volume = {59},
year = {1986},
}
TY - JOUR
AU - Flenner, Hubert
TI - The infinitesimal M. Noether theorem for singularities
JO - Compositio Mathematica
PY - 1986
PB - Martinus Nijhoff Publishers
VL - 59
IS - 1
SP - 41
EP - 50
LA - eng
KW - factoriality of isolated Gorenstein-singularities; splitting of normal bundle sequences
UR - http://eudml.org/doc/89780
ER -
References
top- [1] M. Artin: Algebraic approximation of structures over complete local rings. Pub. Math. I.H.E.S. 36 (1969) 23-58. Zbl0181.48802MR268188
- [2] J. Bingener: Über die Divisorenklassengruppen lokaler Ringe. Math. Ann.229 (1977) 173-179. Zbl0338.13016MR447238
- [3] J. Bingener, H. Flenner: Variation of the divisor class group. J. f. d. r. u. a. Math.351 (1984) 20-41. Zbl0542.14003MR749675
- [4] J. Bingener, U. Storch: Zur Berechnung der Divisorenklassengruppen kompletter lokaler Ringe. Nova acta Leopoldina NF52, Nr. 240 (1981) 7-63. Zbl0492.14005MR642696
- [5] J.F. Boutot: Schéma de Picard Local. Lecture Notes in Math. 632. SpringerBerlin -Heidelberg-New York (1978). Zbl0371.14005MR492263
- [6] R.-O. Buchweitz: Contributions à la théorie des singularités. Thèses à l'Université Paris VII (1981).
- [7] J. Carlson, M. Green, P. Griffiths, J. Harris: Infinitesimal variations of Hodge structure (I). Comp. Math.50 (1983) 109-205. Zbl0531.14006MR720288
- [8] H. Flenner: Über Deformationen holomorpher Abbildungen. Habilitationsschrift Osnabrück (1978).
- [9] H. Flenner: Divisorenklassengruppen quasihomogener Singularitäten, J. f. d. r. u. a. Math.328 (1981) 128-159. Zbl0457.14001MR636200
- [10] R.M. Fossum: The divisor class group of a Krull domain. Erg. d. Math. Bd.74, SpringerBerlin-Heidelberg- New York (1973). Zbl0256.13001MR382254
- [11] P. Griffiths, J. Harris: Infinitesimal variations of Hodge structures (II): An infinitesimal invariant of Hodge classes. Comp. Math.50 (1983) 207-265. Zbl0576.14008MR720289
- [12] P. Griffiths, J. Harris: Principles of Algebraic Geometry. John Wiley (1978). Zbl0408.14001MR507725
- [13] A. Grothendieck et al.: Théorie des Intersections et Théorème de Riemann-Roch (SGA 6). Lecture Notes in Math. 225, SpringerBerlin-Heidelberg-New York (1971). Zbl0221.14003MR354655
- [14] A. Grothendieck: Local Cohomology. Lecture Notes in Math. 41, Springer Berlin-Heidelberg- New York (1967). Zbl0185.49202MR224620
- [15] A. Grothendieck: Cohomologie locale des faisceaux cohérents et Théorèmes de Lefschetz locaux et globaux (SGA 2). North Holland Publ. CompanyAmsterdam (1968). Zbl0197.47202MR476737
- [16] J. Harris, K. Hulek: On the normal bundle of curves on complete intersection surfaces. Math. Ann.264 (1983) 129-135. Zbl0497.14025MR709866
- [17] R. Hartshorne: Algebraic Geometry. Graduate Texts in Math. 52. SpringerBerlin-Heidelberg- New York (1966). MR463157
- [18] R. Hartshorne, A. Ogus: On the factoriality of local rings of small embedding codimension. Communications in Algebra1 (1974) 415-437. Zbl0286.13013MR347821
- [19] K. Hulek: Complete intersection curve, the splitting of the normal bundle and the Veronese surface. Preprint Erlangen. Zbl0576.14034MR805333
- [20] C. Huneke: Numerical invariants of liaison classes. Inv. Math.75 (1984) 301-325. Zbl0536.13005MR732549
- [21] C. Huneke, B. Ulrich: Divisor class group and deformations. Am. J. Math.107 (1985) 1265-1304. Zbl0587.13006MR815763
- [22] A. Kustin, M. Miller: Deformation and linkage of Gorenstein algebras. Trans. AMS.284 (1984) 501-534. Zbl0545.13010MR743730
- [23] J. Lipman: Rings with a discrete divisor class group: Theorem of Danilov-Samuel. Amer. J. Math.101 (1979) 203-211. Zbl0417.13009MR527832
- [24] J. Lipman: Picard schemes of formal schemes; application to rings with discrete divisor class of group. In: Classification of algebraic Varieties and compact complex Manifolds. Lec. Notes in Math. 412, SpringerBerlin- Heidelberg-New York (1974). Zbl0301.13007MR354662
- [25] M. Noether: Zur Grundlegung der Theorie der algebraischen Raumkurven. J. f. d. r. u. a. Math.93 (1882) 271-318. Zbl14.0669.03JFM14.0669.03
- [26] T. Oshawa: A reduction theorem for cohomology groups of very strongly q-convex Kähler manifolds. Inv. Math.63 (1981) 335-354. Zbl0457.32007MR610543
- [27] U. Storch: Fastfaktorielle Ringe. Schriftenreihe des Math. Inst. der Univ. Münster, Heft 36 (1967) 1-42. Zbl0168.28901MR214588
- [28] B. Ulrich: Gorenstein rings as specializations of unique factorization domains. J. Alg.86 (1984) 129-140. Zbl0531.13014MR727372
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.