Infinitesimal variations of hodge structure (I)

James Carlson; Mark Green; Phillip Griffiths; Joe Harris

Compositio Mathematica (1983)

  • Volume: 50, Issue: 2-3, page 109-205
  • ISSN: 0010-437X

How to cite


Carlson, James, et al. "Infinitesimal variations of hodge structure (I)." Compositio Mathematica 50.2-3 (1983): 109-205. <>.

author = {Carlson, James, Green, Mark, Griffiths, Phillip, Harris, Joe},
journal = {Compositio Mathematica},
keywords = {IVHS; generic polarized Hodge structure; infinitesimal variation of Hodge structure; infinitesimal Schottky relations; moduli of curves; Gauss linear system; Jacobian system; Torelli theorem for cubic hypersurfaces},
language = {eng},
number = {2-3},
pages = {109-205},
publisher = {Martinus Nijhoff Publishers},
title = {Infinitesimal variations of hodge structure (I)},
url = {},
volume = {50},
year = {1983},

AU - Carlson, James
AU - Green, Mark
AU - Griffiths, Phillip
AU - Harris, Joe
TI - Infinitesimal variations of hodge structure (I)
JO - Compositio Mathematica
PY - 1983
PB - Martinus Nijhoff Publishers
VL - 50
IS - 2-3
SP - 109
EP - 205
LA - eng
KW - IVHS; generic polarized Hodge structure; infinitesimal variation of Hodge structure; infinitesimal Schottky relations; moduli of curves; Gauss linear system; Jacobian system; Torelli theorem for cubic hypersurfaces
UR -
ER -


  1. [1] R. Accola: On Castelnuovo's inequality for algebraic curves I. Trans. AMS.251 (1979) 357-373. Zbl0417.14021MR531984
  2. [2] E. Arbarello, M. Cornalba, P. Griffiths and J. Harris: Topics in the Theory of Algebraic Curves, Princeton Univ. Press, (to appear). Zbl0559.14017
  3. [3] L. Bers: Finite dimensional Teichmüller spaces and generalizations. Bull. AMS.5 (1981) 131-172. Zbl0485.30002MR621883
  4. [4] J. Carlson and P. Griffiths: Infinitesimal variations of Hodge structure and the global Torelli problem. Journees de geometrie algebrique d'Angers, Sijthoff and Noordhoff (1980) 51-76. Zbl0479.14007MR605336
  5. [5] F. Catanese: The moduli and global period mapping of surfaces with K2 = pg = 1. Comp. Nath.41 (1980) 401-414. Zbl0444.14008MR589089
  6. [6] E. Cattani and A. Kaplan: The monodromy weight filtration for a several variables degeneration of Hodge structures of weight twoInvent. Math.52 (1979) 131-142. Zbl0408.32005MR536076
  7. [7] K. Chakiris: Counter examples to global Torelli for certain simply connected surfaces. Bull. AMS.2 (1980) 297-299. Zbl0432.32014MR555265
  8. [8] H. Clemens: Degenerations of Kahler manifolds. Duke Math. J.44 (1977) 215-290. Zbl0353.14005MR444662
  9. [9] M. Cornalba and P. Griffiths: Some transcendental aspects of algebraic geometry. Proceedings of symposia in Pure Mathematics Volume 29 (1975), A.M.S. Zbl0309.14007MR419438
  10. [10] P. Deligne: Théorie de Hodge I, II, III, Actes de Congrès international des Mathematiciens (Nice, 1970), Gauthier-Villars, 1971, 1, pp. 425-430; Publ. Math. I.H.E.S.40 (1971) 5-58; Publ. Math. I.H.E.S.44 (1974) 5-78. MR441965
  11. [11] P. Deligne and D. Mumford: The irreducibility of the space of curves of given genus. Publ. Math. I.H.E.S. 36 (1969) 75-110. Zbl0181.48803MR262240
  12. [12] F. Elzein and S. Zucker: Extendability of the Abel-Jacobi map. To appear. 
  13. [13] R. Friedman: Hodge theory, degenerations, and the global Torelli problem. Thesis, Harvard University, 1981. 
  14. [14] R. Friedman and R. Smith: The generic Torelli theorem for the Prym map. Invent. Math.67 (1982) 473-490. Zbl0506.14042MR664116
  15. [15] T. Fujita: On Kähler fiber spaces over curves. J. Math. Soc. Japan30 (1978) 779-794. Zbl0393.14006MR513085
  16. [16] P. Griffiths: Periods of integrals on algebraic manifolds. Bull. Amer. Math. Soc.75 (1970) 228-296. Zbl0214.19802MR258824
  17. [ 17] P. Griffiths and W. Schmid: Recent developments in Hodge theory: a discussion of techniques and results. In: Discrete Subgroups of Lie Groups and Applications to Moduli, Oxford1975. Zbl0355.14003MR419850
  18. [18] P. Griffiths and W. Schmid: Locally homogeneous complex manifolds. Acta Math.123 (1970) 253-302. Zbl0209.25701MR259958
  19. [19] P. Griffiths: Periods of integrals on algebraic manifolds I and II. Amer. J. Math.90 (1968) 568-626 and 805-865. Zbl0183.25501
  20. [20] P. Griffiths and J. Harris: Principles of Algebraic Geometry, John Wiley, 1978. Zbl0408.14001MR507725
  21. [21] P. Griffiths: Periods of integrals on algebraic manifolds III. Publ. Math. I.H.E.S.38 (1970) 125-180. Zbl0212.53503MR282990
  22. [22] P. Griffiths: Periods of certain rational integrals. Ann. Math.90 (1969) 460-541. Zbl0215.08103MR260733
  23. [23] P. Griffiths: A theorem concerning the differential equations satisfied by normal functions associated to algebraic cycles. Amer. J. Math.101 (1979) 94-131. Zbl0453.14001MR527828
  24. [24] P. Griffiths: On Cartan's method of Lie groups and moving frames as applied to uniqueness and existence questions in differential geometry. Duke Math. J.41 (1974) 775-814. Zbl0294.53034MR410607
  25. [25] P. Griffiths: and J. Harris: Residues and zero-cycles on an algebraic variety. Ann. Math.108 (1978) 461-505. Zbl0423.14001MR512429
  26. [26] A. Grothendieck: On the deRham cohomology of algebraic varieties. Publ. Math. I.H.E.S.29 (1966) 95-103. Zbl0145.17602
  27. [27] W.V.D. Hodge: The Theory and Applications of Harmonic Integrals, Cambridge University Press, 1941. Zbl0048.15702MR3947
  28. [28] Y. Kawamata: Characterization of abelian varieties. Comp. Math.43 (1981) 253-276. Zbl0471.14022MR622451
  29. [29] K. Kodaira and D. Spencer: On deformations of complex analytic structures, I and II. Ann. Math.67 (1958) 328-466. Zbl0128.16901MR112154
  30. [30] K. Kodaira: A theorem of completeness of characteristic systems for analytic families of compact subvarities of complex manifolds. Ann. Math.75 (1962) 146-162. Zbl0112.38404MR133841
  31. [31] M. Kuranishi: New proof for the existence of locally complete families of algebraic structures. In: Proceedings of the Conference on Complex Analysis, Minneapolis1964, NY, Springer-Verlag, 1965. Zbl0144.21102MR176496
  32. [32] S. Lefschetz: L'Analysis Situs et la Geometrie Algebrique, Paris, Gauthier-Villars, 1924. JFM50.0663.01
  33. [33] D. Lieberman: Higher Picard varieties. Amer. J. Math.90 (1968) 1165-1199. Zbl0183.25401MR238857
  34. [34] D. Lieberman: On the module of intermediate Jacobians. Amer. J. Math.91 (1969) 671-682. Zbl0187.18701MR257076
  35. [35] Y. Manin: Correspondence, motifs and monoidal transformations. Math. USSR- Sbornik6 (1968) 439-470. Zbl0199.24803
  36. [36] B. Moishezon: Algebraic homology classes on algebraic varieties. Izv. Akad. Nauk.31 (1967) 225-268. Zbl0162.52503MR213351
  37. [37] D. Mumford: Geometric Invariant Theory, Springer-Verlag1966. Zbl0147.39304MR214602
  38. [38] F. Oort and J. Steenbrink: On the local Torelli problem for algebraic curves. In: Journeés de geometrie algébrique d'Angers, RockvilleSijthoff & Noordhoff (1980). Zbl0444.14007MR605341
  39. [39] C. Peters and J. Steenbrink: Infinitesimal variation of Hodge structure. Notes from Leyden University, 1980. 
  40. [40] A. Piateski-Shapiro and I. Safarevich: A Torelli theorem for algebraic surfaces of type K-3. Izv. Akad. Nauk.35 (1971) 530-572. Zbl0219.14021
  41. [41] E. Picard and G. Simart: Theorie des fanctions algébriques de deux variables independantes, Paris, Gauthier-Villars1897 and 1906; and Bronx, NY, Chelsea1971. JFM28.0327.01
  42. [42] B. Saint-Donat: On Petri's analysis of the linear system of quadrics through a canonical curve. Math. Ann.206 (1973) 157-175. Zbl0315.14010MR337983
  43. [43] J. Scherk: On the monodromy theorem for isolated hypersurface singularities. Invent. Math.58 (1980) 289-301. Zbl0432.32010MR571577
  44. [44] W. Schmid: Variations of Hodge structures: the singularities of the period mapping. Invent. Math.22 (1973) 211-319. Zbl0278.14003
  45. [45] J.-P. Serre: Faisceaux algébriques cohérents. Ann. Math.61 (1955) 197-278. Zbl0067.16201MR68874
  46. [46] J. Steenbrink: Limits of Hodge structures. Invent. Math.31 (1976) 229-257. Zbl0303.14002MR429885
  47. [47] A. Todorov: Surfaces of general type with pg = 1 and (K.K) = 1 (I). Ann. Ec. Norm. Sup.13 (1980) 1- 21. Zbl0478.14030
  48. [48] L. Tu: Variation of Hodge structure and the local Torelli problem. Thesis, Harvard University, 1979. 
  49. [49] A. Weil: On Picard varieties. Amer. J. Math.74 (1952) 865-894. Zbl0048.38302MR50330
  50. [50] S. Zucker: Generalized and Intermediate Jacobians and the theorem on normal functions. Invent. Math.33 (1976) 185-222. Zbl0329.14008MR412186

Citations in EuDML Documents

  1. Mark L. Green, The period map for hypersurface sections of high degree of an arbitrary variety
  2. Ron Donagi, Generic torelli for projective hypersurfaces
  3. Elisabetta Colombo, Gian Pietro Pirola, Alfonso Tortora, Hodge-gaussian maps
  4. Kęstutis Ivinskis, A variational Torelli theorem for cyclic coverings of high degree
  5. Phillip Griffiths, Joe Harris, Infinitesimal variations of hodge structure (II) : an infinitesimal invariant of hodge classes
  6. Hubert Flenner, The infinitesimal M. Noether theorem for singularities
  7. Kazuhiro Konno, On the variational Torelli problem for complete intersections
  8. Rita Pardini, On the period map for abelian covers of projective varieties

NotesEmbed ?


You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.


Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.