Macaulay's theorem and local Torelli for weighted hypersurfaces

Loring Tu

Compositio Mathematica (1986)

  • Volume: 60, Issue: 1, page 33-44
  • ISSN: 0010-437X

How to cite

top

Tu, Loring. "Macaulay's theorem and local Torelli for weighted hypersurfaces." Compositio Mathematica 60.1 (1986): 33-44. <http://eudml.org/doc/89795>.

@article{Tu1986,
author = {Tu, Loring},
journal = {Compositio Mathematica},
keywords = {local Torelli problem; period map; quasi-smooth weighted hypersurfaces},
language = {eng},
number = {1},
pages = {33-44},
publisher = {Martinus Nijhoff Publishers},
title = {Macaulay's theorem and local Torelli for weighted hypersurfaces},
url = {http://eudml.org/doc/89795},
volume = {60},
year = {1986},
}

TY - JOUR
AU - Tu, Loring
TI - Macaulay's theorem and local Torelli for weighted hypersurfaces
JO - Compositio Mathematica
PY - 1986
PB - Martinus Nijhoff Publishers
VL - 60
IS - 1
SP - 33
EP - 44
LA - eng
KW - local Torelli problem; period map; quasi-smooth weighted hypersurfaces
UR - http://eudml.org/doc/89795
ER -

References

top
  1. [1] A. Al-Amrani: Classes d'ideaux et groupe de Picard des fibrés projectifs tordus, preprint. 
  2. [2] R. Bott and L. Tu: Differential Forms in Algebraic Topology. Springer-Verlag, New York (1982). Zbl0496.55001MR658304
  3. [3] F. Catanese: The moduli and the global period mapping of surfaces with K2 = pg = 1: a counterexample to the global Torelli problem. Comp. Math.41 (1980) 401-414. Zbl0444.14008MR589089
  4. [4] C. Delorme: Espaces projectifs anisotropes. Bull. Soc. Math. France103 (1975) 203-223. Zbl0314.14016MR404277
  5. [5] I. Dolgachev: Weighted projective varieties, in Group Actions and Vector Fields, Proceedings 1981, Lecture Notes in Math. 956, Springer-Verlag, New York (1982). Zbl0516.14014MR704986
  6. [6] R. Donagi: Generic Torelli for projective hypersurfaces. Comp. Math.50 (1983) 325-353. Zbl0598.14007MR720291
  7. [7] R. Fröberg and D. Laksov: Compressed algebra, in Complete Intersections, Acireale 1983, Lecture Notes in Math. 1092, Springer-Verlag, New York (1984). Zbl0558.13007MR775880
  8. [8] A. Fujiki: On primitively symplectic compact Kähler V-manifolds of dimension four, in Classification of Algebraic and Analytic Manifolds, Progress in Mathematics, Vol. 39, Birkhäuser, Boston (1983). Zbl0549.32018MR728609
  9. [9] M. Green: The period map for hypersurface sections of high degree of an arbitrary variety, Comp. Math.55 (1985) 135-156. Zbl0588.14004MR795711
  10. [10] P. Griffiths: On the periods of certain rational integrals: I, II. Annals of Math.90 (1969) 460-541. Zbl0215.08103MR260733
  11. [11] P. Hilton and U. Stammbach: A Course in Homological Algebra. Springer-Verlag, New York (1971). Zbl0238.18006MR346025
  12. [12] S. Lang: Algebra, second edition, Addison-Wesley. Menlo Park, California (1984). Zbl0712.00001MR783636
  13. [13] S. Mori: On a generalization of complete intersections. J. Math. Kyoto University15-3 (1975) 619-646. Zbl0332.14019MR393054
  14. [14] J. Steenbrink: Intersection form for quasi-homogeneous singularities. Comp. Math.34 (1977) 211-223. Zbl0347.14001MR453735
  15. [15] A. Todorov: Surfaces of general type with pg = 1 and K2 = 1. Ann. Ec. Norm. Sup.13, 1 (1980) 1-21. Zbl0478.14030
  16. [16] S. Usui: Local Torelli for some nonsingular weighted complete intersections. Proceedings of the International Symposium on Algebraic Geometry (1977), Kyoto, 723-734. Zbl0418.14005MR578884

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.