Macaulay's theorem and local Torelli for weighted hypersurfaces

Loring Tu

Compositio Mathematica (1986)

  • Volume: 60, Issue: 1, page 33-44
  • ISSN: 0010-437X

How to cite

top

Tu, Loring. "Macaulay's theorem and local Torelli for weighted hypersurfaces." Compositio Mathematica 60.1 (1986): 33-44. <http://eudml.org/doc/89795>.

@article{Tu1986,
author = {Tu, Loring},
journal = {Compositio Mathematica},
keywords = {local Torelli problem; period map; quasi-smooth weighted hypersurfaces},
language = {eng},
number = {1},
pages = {33-44},
publisher = {Martinus Nijhoff Publishers},
title = {Macaulay's theorem and local Torelli for weighted hypersurfaces},
url = {http://eudml.org/doc/89795},
volume = {60},
year = {1986},
}

TY - JOUR
AU - Tu, Loring
TI - Macaulay's theorem and local Torelli for weighted hypersurfaces
JO - Compositio Mathematica
PY - 1986
PB - Martinus Nijhoff Publishers
VL - 60
IS - 1
SP - 33
EP - 44
LA - eng
KW - local Torelli problem; period map; quasi-smooth weighted hypersurfaces
UR - http://eudml.org/doc/89795
ER -

References

top
  1. [1] A. Al-Amrani: Classes d'ideaux et groupe de Picard des fibrés projectifs tordus, preprint. 
  2. [2] R. Bott and L. Tu: Differential Forms in Algebraic Topology. Springer-Verlag, New York (1982). Zbl0496.55001MR658304
  3. [3] F. Catanese: The moduli and the global period mapping of surfaces with K2 = pg = 1: a counterexample to the global Torelli problem. Comp. Math.41 (1980) 401-414. Zbl0444.14008MR589089
  4. [4] C. Delorme: Espaces projectifs anisotropes. Bull. Soc. Math. France103 (1975) 203-223. Zbl0314.14016MR404277
  5. [5] I. Dolgachev: Weighted projective varieties, in Group Actions and Vector Fields, Proceedings 1981, Lecture Notes in Math. 956, Springer-Verlag, New York (1982). Zbl0516.14014MR704986
  6. [6] R. Donagi: Generic Torelli for projective hypersurfaces. Comp. Math.50 (1983) 325-353. Zbl0598.14007MR720291
  7. [7] R. Fröberg and D. Laksov: Compressed algebra, in Complete Intersections, Acireale 1983, Lecture Notes in Math. 1092, Springer-Verlag, New York (1984). Zbl0558.13007MR775880
  8. [8] A. Fujiki: On primitively symplectic compact Kähler V-manifolds of dimension four, in Classification of Algebraic and Analytic Manifolds, Progress in Mathematics, Vol. 39, Birkhäuser, Boston (1983). Zbl0549.32018MR728609
  9. [9] M. Green: The period map for hypersurface sections of high degree of an arbitrary variety, Comp. Math.55 (1985) 135-156. Zbl0588.14004MR795711
  10. [10] P. Griffiths: On the periods of certain rational integrals: I, II. Annals of Math.90 (1969) 460-541. Zbl0215.08103MR260733
  11. [11] P. Hilton and U. Stammbach: A Course in Homological Algebra. Springer-Verlag, New York (1971). Zbl0238.18006MR346025
  12. [12] S. Lang: Algebra, second edition, Addison-Wesley. Menlo Park, California (1984). Zbl0712.00001MR783636
  13. [13] S. Mori: On a generalization of complete intersections. J. Math. Kyoto University15-3 (1975) 619-646. Zbl0332.14019MR393054
  14. [14] J. Steenbrink: Intersection form for quasi-homogeneous singularities. Comp. Math.34 (1977) 211-223. Zbl0347.14001MR453735
  15. [15] A. Todorov: Surfaces of general type with pg = 1 and K2 = 1. Ann. Ec. Norm. Sup.13, 1 (1980) 1-21. Zbl0478.14030
  16. [16] S. Usui: Local Torelli for some nonsingular weighted complete intersections. Proceedings of the International Symposium on Algebraic Geometry (1977), Kyoto, 723-734. Zbl0418.14005MR578884

NotesEmbed ?

top

You must be logged in to post comments.