On normal abelian subgroups in parabolic groups

Gerhard Röhrle

Annales de l'institut Fourier (1998)

  • Volume: 48, Issue: 5, page 1455-1482
  • ISSN: 0373-0956

Abstract

top
Let G be a reductive algebraic group, P a parabolic subgroup of G with unipotent radical P u , and A a closed connected subgroup of P u which is normalized by P . We show that P acts on A with finitely many orbits provided A is abelian. This generalizes a well-known finiteness result, namely the case when A is central in P u . We also obtain an analogous result for the adjoint action of P on invariant linear subspaces of the Lie algebra of P u which are abelian Lie algebras. Finally, we discuss a connection to some work of Mal’cev on maximal abelian subalgebras of the Lie algebra of G .

How to cite

top

Röhrle, Gerhard. "On normal abelian subgroups in parabolic groups." Annales de l'institut Fourier 48.5 (1998): 1455-1482. <http://eudml.org/doc/75326>.

@article{Röhrle1998,
abstract = {Let $G$ be a reductive algebraic group, $P$ a parabolic subgroup of $G$ with unipotent radical $P_u$, and $A$ a closed connected subgroup of $P_u$ which is normalized by $P$. We show that $P$ acts on $A$ with finitely many orbits provided $A$ is abelian. This generalizes a well-known finiteness result, namely the case when $A$ is central in $P_u$. We also obtain an analogous result for the adjoint action of $P$ on invariant linear subspaces of the Lie algebra of $P_u$ which are abelian Lie algebras. Finally, we discuss a connection to some work of Mal’cev on maximal abelian subalgebras of the Lie algebra of $G$.},
author = {Röhrle, Gerhard},
journal = {Annales de l'institut Fourier},
keywords = {reductive algebraic groups; parabolic subgroups; numbers of orbits},
language = {eng},
number = {5},
pages = {1455-1482},
publisher = {Association des Annales de l'Institut Fourier},
title = {On normal abelian subgroups in parabolic groups},
url = {http://eudml.org/doc/75326},
volume = {48},
year = {1998},
}

TY - JOUR
AU - Röhrle, Gerhard
TI - On normal abelian subgroups in parabolic groups
JO - Annales de l'institut Fourier
PY - 1998
PB - Association des Annales de l'Institut Fourier
VL - 48
IS - 5
SP - 1455
EP - 1482
AB - Let $G$ be a reductive algebraic group, $P$ a parabolic subgroup of $G$ with unipotent radical $P_u$, and $A$ a closed connected subgroup of $P_u$ which is normalized by $P$. We show that $P$ acts on $A$ with finitely many orbits provided $A$ is abelian. This generalizes a well-known finiteness result, namely the case when $A$ is central in $P_u$. We also obtain an analogous result for the adjoint action of $P$ on invariant linear subspaces of the Lie algebra of $P_u$ which are abelian Lie algebras. Finally, we discuss a connection to some work of Mal’cev on maximal abelian subalgebras of the Lie algebra of $G$.
LA - eng
KW - reductive algebraic groups; parabolic subgroups; numbers of orbits
UR - http://eudml.org/doc/75326
ER -

References

top
  1. [1] H. AZAD, M. BARRY, G. SEITZ, On the structure of parabolic subgroups, Com. in Algebra, 18 (1990), 551-562. Zbl0717.20029MR91d:20048
  2. [2] A. BOREL, Linear Algebraic Groups, GTM 126, Springer Verlag, 1991. Zbl0726.20030MR92d:20001
  3. [3] N. BOURBAKI, Groupes et algèbres de Lie, Chapitres 4,5 et 6, Hermann, Paris, 1975. 
  4. [4] M. BRION, Quelques propriétés des espaces homogénes sphériques, Man. Math., 99 (1986), 191-198. Zbl0604.14048MR87g:14054
  5. [5] M. BRION, Classification des espaces homogénes sphériques, Comp. Math., 63 (1987), 189-208. Zbl0642.14011MR89d:32068
  6. [6] M. BRION, Proceedings of the International Congress of Mathematicians, Zürich, 1994, 753-760. Zbl0862.14031
  7. [7] J. BRUNDAN, Dense Orbits and Double Cosets, Proceedings of the NATO/ASI meeting ”Algebraic groups and their representations“, Kluwer, 1998. Zbl0933.20038MR99k:20090
  8. [8] T. BRÜSTLE, L. HILLE, Actions of parabolic subgroups of GL(V) on certain unipotent subgroups and quasi-hereditary algebras, preprint 97-115, SFB 343, Bielefeld, 1997. 
  9. [9] H. BÜRGSTEIN, W.H. HESSELINK, Algorithmic orbit classification for some Borel group actions, Comp. Math., 61 (1987), 3-41. Zbl0612.17005MR88k:20069
  10. [10] S. DONKIN, Rational representations of algebraic groups: Tensor products and filtrations, Springer Lecture Notes in Math., 1140 (1985). Zbl0586.20017MR87b:20054
  11. [11] E.B. DYNKIN, Semisimple subalgebras of semisimple Lie algebras, Amer. Math. Soc. Transl. Ser. 2, 6 (1957), 111-244. Zbl0077.03404
  12. [12] L. HILLE, G. RÖHRLE, On parabolic subgroups of classical groups with a finite number of orbits on the unipotent radical, C. R. Acad. Sci. Paris, Série I, 325 (1997), 465-470. Zbl0922.20049
  13. [13] L. HILLE, G. RÖHRLE, A classification of parabolic subgroups of classical groups with a finite number of orbits on the unipotent radical, to appear in Transformation Groups. Zbl0924.20035
  14. [14] U. JÜRGENS, G. RÖHRLE, Algorithmic Modality Analysis for Parabolic Groups, to appear in Geom. Dedicata. Zbl0943.20042
  15. [15] V. KAC, Some remarks on nilpotent orbits, J. Algebra, 64 (1980), 190-213. Zbl0431.17007MR81i:17005
  16. [16] V.V. KASHIN, Orbits of adjoint and coadjoint actions of Borel subgroups of semisimple algebraic groups, Problems in Group Theory and Homological algebra, Yaroslavl', (Russian), 1997, 141-159. Zbl0765.20018MR93m:20058
  17. [17] F. KNOP, On the set of orbits for a Borel subgroup, Comment. Math. Helv., 70 (1995), 285-309. Zbl0828.22016MR96c:14039
  18. [18] B. KOSTANT, Eigenvalues of the Laplacian and commutative Lie subalgebras, Topology, 3, suppl. 2 (1965), 147-159. Zbl0134.03504MR29 #4839
  19. [19] B. KOSTANT, The set of abelian ideals of a Borel subalgebra, Cartan decompositions, and discrete series representations, Internat. Math. Res. Notices, 5 (1998), 225-252. Zbl0896.17002MR99c:17010
  20. [20] M. KRÄMER, Sphärische Untergruppen in kompakten zusammenhängenden Liegruppen, Compositio Math., 38 (1979), 129-153. Zbl0402.22006
  21. [21] A. MAL'CEV, Commutative subalgebras of semi-simple Lie algebras, Translations of the Amer. Math. Soc. Series 1, 9 (1951), 214-227. 
  22. [22] O. MATHIEU, Filtrations of G-modules, Ann. Sci. École Norm. Sup., 23 (1990), 625-644. Zbl0748.20026MR92a:20044
  23. [23] I. MIKITYUK, On the integrability of invariant hamiltonian systems with homogeneous configurations spaces, Math. USSR-Sb., 57 (1987), 527-546. Zbl0652.70012
  24. [24] I. MULLER, H. RUBENTHALER, G. SCHIFFMANN, Structure des espaces préhomogènes associés à certaines algèbres de Lie graduées, Math. Ann., 274 (1986), 95-123. Zbl0568.17007MR88e:17025
  25. [25] V.L. POPOV, A finiteness theorem for parabolic subgroups of fixed modality, Indag. Math. N. S., 8 (1) (1997), 125-132. Zbl0905.20029MR99k:20095
  26. [26] V. POPOV, G. RÖHRLE, On the number of orbits of a parabolic subgroup on its unipotent radical, Algebraic Groups and Lie Groups, Australian Mathematical Society Lecture Series, 9, ed. G.I. Lehrer, Cambridge University Press, 1997, 297-320. Zbl0887.14020MR99f:14063
  27. [27] V.S. PYASETSKII, Linear Lie groups acting with finitely many orbits, Funct. Anal. Appl., 9 (1975), 351-353. Zbl0326.22004
  28. [28] R.W. RICHARDSON, Finiteness Theorems for Orbits of Algebraic Groups, Indag. Math., 88 (1985), 337-344. Zbl0595.20039MR87e:14044
  29. [29] R.W. RICHARDSON, G. RÖHRLE, R. STEINBERG, Parabolic subgroups with Abelian unipotent radical, Inv. Math., 110 (1992), 649-671. Zbl0786.20029MR93j:20092
  30. [30] G. RÖHRLE, Parabolic subgroups of positive modality, Geom. Dedicata, 60 (1996), 163-186. Zbl0853.20031MR97c:20070
  31. [31] G. RÖHRLE, A note on the modality of parabolic subgroups, Indag. Math. N.S., 8 (4) (1997), 549-559. Zbl0906.20033MR99e:20060
  32. [32] G. RÖHRLE, On the modality of parabolic subgroups of linear algebraic groups, to appear in Manuscripta Math. Zbl0933.20037
  33. [33] M. ROSENLICHT, On quotient varieties and the affine embeddings of certain homogeneous spaces, Trans. Amer. Math. Soc., 101 (1961), 211-223. Zbl0111.17902MR24 #A732
  34. [34] I. SCHUR, Zur Theorie der vertauschbaren Matrizen, J. reine und angew. Math., 130 (1905), 66-76. JFM36.0140.01
  35. [35] T.A. SPRINGER, The unipotent variety of a semisimple group, Proc. of the Bombay Colloq. in Algebraic Geometry (ed. S. Abhyankar), London, Oxford Univ. Press (1969), 373-391. Zbl0195.50803MR41 #8429
  36. [36] T.A. SPRINGER, Some results on algebraic groups with involutions, Advanced Studies in Pure Math., 6 (1985), 525-543. Zbl0628.20036MR86m:20050
  37. [37] T.A. SPRINGER, R. STEINBERG, Conjugacy classes in Seminar on algebraic groups and related finite groups, Lect. Notes Math., 131, Springer Verlag, Heidelberg (1970). Zbl0249.20024
  38. [38] R. STEINBERG, Lectures on Chevalley Groups, Yale University, 1968. 
  39. [39] R. STEINBERG, Conjugacy Classes in Algebraic Groups, Springer Lecture Notes in Math., 366 (1974). Zbl0281.20037MR50 #4766
  40. [40] N. VAVILOV, Weight elements of Chevalley groups, preprint. Zbl0727.20034
  41. [41] E.B. VINBERG, The Weyl group of a graded Lie algebra, Math. USSR-Izv., 10 (1976), 463-495. Zbl0371.20041MR55 #3175
  42. [42] E.B. VINBERG, Complexity of actions of reductive groups, Funct. Anal. Appl., 20 (1986), 1-11. Zbl0601.14038MR87j:14077

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.