On normal abelian subgroups in parabolic groups
Annales de l'institut Fourier (1998)
- Volume: 48, Issue: 5, page 1455-1482
- ISSN: 0373-0956
Access Full Article
topAbstract
topHow to cite
topRöhrle, Gerhard. "On normal abelian subgroups in parabolic groups." Annales de l'institut Fourier 48.5 (1998): 1455-1482. <http://eudml.org/doc/75326>.
@article{Röhrle1998,
abstract = {Let $G$ be a reductive algebraic group, $P$ a parabolic subgroup of $G$ with unipotent radical $P_u$, and $A$ a closed connected subgroup of $P_u$ which is normalized by $P$. We show that $P$ acts on $A$ with finitely many orbits provided $A$ is abelian. This generalizes a well-known finiteness result, namely the case when $A$ is central in $P_u$. We also obtain an analogous result for the adjoint action of $P$ on invariant linear subspaces of the Lie algebra of $P_u$ which are abelian Lie algebras. Finally, we discuss a connection to some work of Mal’cev on maximal abelian subalgebras of the Lie algebra of $G$.},
author = {Röhrle, Gerhard},
journal = {Annales de l'institut Fourier},
keywords = {reductive algebraic groups; parabolic subgroups; numbers of orbits},
language = {eng},
number = {5},
pages = {1455-1482},
publisher = {Association des Annales de l'Institut Fourier},
title = {On normal abelian subgroups in parabolic groups},
url = {http://eudml.org/doc/75326},
volume = {48},
year = {1998},
}
TY - JOUR
AU - Röhrle, Gerhard
TI - On normal abelian subgroups in parabolic groups
JO - Annales de l'institut Fourier
PY - 1998
PB - Association des Annales de l'Institut Fourier
VL - 48
IS - 5
SP - 1455
EP - 1482
AB - Let $G$ be a reductive algebraic group, $P$ a parabolic subgroup of $G$ with unipotent radical $P_u$, and $A$ a closed connected subgroup of $P_u$ which is normalized by $P$. We show that $P$ acts on $A$ with finitely many orbits provided $A$ is abelian. This generalizes a well-known finiteness result, namely the case when $A$ is central in $P_u$. We also obtain an analogous result for the adjoint action of $P$ on invariant linear subspaces of the Lie algebra of $P_u$ which are abelian Lie algebras. Finally, we discuss a connection to some work of Mal’cev on maximal abelian subalgebras of the Lie algebra of $G$.
LA - eng
KW - reductive algebraic groups; parabolic subgroups; numbers of orbits
UR - http://eudml.org/doc/75326
ER -
References
top- [1] H. AZAD, M. BARRY, G. SEITZ, On the structure of parabolic subgroups, Com. in Algebra, 18 (1990), 551-562. Zbl0717.20029MR91d:20048
- [2] A. BOREL, Linear Algebraic Groups, GTM 126, Springer Verlag, 1991. Zbl0726.20030MR92d:20001
- [3] N. BOURBAKI, Groupes et algèbres de Lie, Chapitres 4,5 et 6, Hermann, Paris, 1975.
- [4] M. BRION, Quelques propriétés des espaces homogénes sphériques, Man. Math., 99 (1986), 191-198. Zbl0604.14048MR87g:14054
- [5] M. BRION, Classification des espaces homogénes sphériques, Comp. Math., 63 (1987), 189-208. Zbl0642.14011MR89d:32068
- [6] M. BRION, Proceedings of the International Congress of Mathematicians, Zürich, 1994, 753-760. Zbl0862.14031
- [7] J. BRUNDAN, Dense Orbits and Double Cosets, Proceedings of the NATO/ASI meeting ”Algebraic groups and their representations“, Kluwer, 1998. Zbl0933.20038MR99k:20090
- [8] T. BRÜSTLE, L. HILLE, Actions of parabolic subgroups of GL(V) on certain unipotent subgroups and quasi-hereditary algebras, preprint 97-115, SFB 343, Bielefeld, 1997.
- [9] H. BÜRGSTEIN, W.H. HESSELINK, Algorithmic orbit classification for some Borel group actions, Comp. Math., 61 (1987), 3-41. Zbl0612.17005MR88k:20069
- [10] S. DONKIN, Rational representations of algebraic groups: Tensor products and filtrations, Springer Lecture Notes in Math., 1140 (1985). Zbl0586.20017MR87b:20054
- [11] E.B. DYNKIN, Semisimple subalgebras of semisimple Lie algebras, Amer. Math. Soc. Transl. Ser. 2, 6 (1957), 111-244. Zbl0077.03404
- [12] L. HILLE, G. RÖHRLE, On parabolic subgroups of classical groups with a finite number of orbits on the unipotent radical, C. R. Acad. Sci. Paris, Série I, 325 (1997), 465-470. Zbl0922.20049
- [13] L. HILLE, G. RÖHRLE, A classification of parabolic subgroups of classical groups with a finite number of orbits on the unipotent radical, to appear in Transformation Groups. Zbl0924.20035
- [14] U. JÜRGENS, G. RÖHRLE, Algorithmic Modality Analysis for Parabolic Groups, to appear in Geom. Dedicata. Zbl0943.20042
- [15] V. KAC, Some remarks on nilpotent orbits, J. Algebra, 64 (1980), 190-213. Zbl0431.17007MR81i:17005
- [16] V.V. KASHIN, Orbits of adjoint and coadjoint actions of Borel subgroups of semisimple algebraic groups, Problems in Group Theory and Homological algebra, Yaroslavl', (Russian), 1997, 141-159. Zbl0765.20018MR93m:20058
- [17] F. KNOP, On the set of orbits for a Borel subgroup, Comment. Math. Helv., 70 (1995), 285-309. Zbl0828.22016MR96c:14039
- [18] B. KOSTANT, Eigenvalues of the Laplacian and commutative Lie subalgebras, Topology, 3, suppl. 2 (1965), 147-159. Zbl0134.03504MR29 #4839
- [19] B. KOSTANT, The set of abelian ideals of a Borel subalgebra, Cartan decompositions, and discrete series representations, Internat. Math. Res. Notices, 5 (1998), 225-252. Zbl0896.17002MR99c:17010
- [20] M. KRÄMER, Sphärische Untergruppen in kompakten zusammenhängenden Liegruppen, Compositio Math., 38 (1979), 129-153. Zbl0402.22006
- [21] A. MAL'CEV, Commutative subalgebras of semi-simple Lie algebras, Translations of the Amer. Math. Soc. Series 1, 9 (1951), 214-227.
- [22] O. MATHIEU, Filtrations of G-modules, Ann. Sci. École Norm. Sup., 23 (1990), 625-644. Zbl0748.20026MR92a:20044
- [23] I. MIKITYUK, On the integrability of invariant hamiltonian systems with homogeneous configurations spaces, Math. USSR-Sb., 57 (1987), 527-546. Zbl0652.70012
- [24] I. MULLER, H. RUBENTHALER, G. SCHIFFMANN, Structure des espaces préhomogènes associés à certaines algèbres de Lie graduées, Math. Ann., 274 (1986), 95-123. Zbl0568.17007MR88e:17025
- [25] V.L. POPOV, A finiteness theorem for parabolic subgroups of fixed modality, Indag. Math. N. S., 8 (1) (1997), 125-132. Zbl0905.20029MR99k:20095
- [26] V. POPOV, G. RÖHRLE, On the number of orbits of a parabolic subgroup on its unipotent radical, Algebraic Groups and Lie Groups, Australian Mathematical Society Lecture Series, 9, ed. G.I. Lehrer, Cambridge University Press, 1997, 297-320. Zbl0887.14020MR99f:14063
- [27] V.S. PYASETSKII, Linear Lie groups acting with finitely many orbits, Funct. Anal. Appl., 9 (1975), 351-353. Zbl0326.22004
- [28] R.W. RICHARDSON, Finiteness Theorems for Orbits of Algebraic Groups, Indag. Math., 88 (1985), 337-344. Zbl0595.20039MR87e:14044
- [29] R.W. RICHARDSON, G. RÖHRLE, R. STEINBERG, Parabolic subgroups with Abelian unipotent radical, Inv. Math., 110 (1992), 649-671. Zbl0786.20029MR93j:20092
- [30] G. RÖHRLE, Parabolic subgroups of positive modality, Geom. Dedicata, 60 (1996), 163-186. Zbl0853.20031MR97c:20070
- [31] G. RÖHRLE, A note on the modality of parabolic subgroups, Indag. Math. N.S., 8 (4) (1997), 549-559. Zbl0906.20033MR99e:20060
- [32] G. RÖHRLE, On the modality of parabolic subgroups of linear algebraic groups, to appear in Manuscripta Math. Zbl0933.20037
- [33] M. ROSENLICHT, On quotient varieties and the affine embeddings of certain homogeneous spaces, Trans. Amer. Math. Soc., 101 (1961), 211-223. Zbl0111.17902MR24 #A732
- [34] I. SCHUR, Zur Theorie der vertauschbaren Matrizen, J. reine und angew. Math., 130 (1905), 66-76. JFM36.0140.01
- [35] T.A. SPRINGER, The unipotent variety of a semisimple group, Proc. of the Bombay Colloq. in Algebraic Geometry (ed. S. Abhyankar), London, Oxford Univ. Press (1969), 373-391. Zbl0195.50803MR41 #8429
- [36] T.A. SPRINGER, Some results on algebraic groups with involutions, Advanced Studies in Pure Math., 6 (1985), 525-543. Zbl0628.20036MR86m:20050
- [37] T.A. SPRINGER, R. STEINBERG, Conjugacy classes in Seminar on algebraic groups and related finite groups, Lect. Notes Math., 131, Springer Verlag, Heidelberg (1970). Zbl0249.20024
- [38] R. STEINBERG, Lectures on Chevalley Groups, Yale University, 1968.
- [39] R. STEINBERG, Conjugacy Classes in Algebraic Groups, Springer Lecture Notes in Math., 366 (1974). Zbl0281.20037MR50 #4766
- [40] N. VAVILOV, Weight elements of Chevalley groups, preprint. Zbl0727.20034
- [41] E.B. VINBERG, The Weyl group of a graded Lie algebra, Math. USSR-Izv., 10 (1976), 463-495. Zbl0371.20041MR55 #3175
- [42] E.B. VINBERG, Complexity of actions of reductive groups, Funct. Anal. Appl., 20 (1986), 1-11. Zbl0601.14038MR87j:14077
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.