Some birational maps of Fano 3-folds

Kiyohiko Takeuchi

Compositio Mathematica (1989)

  • Volume: 71, Issue: 3, page 265-283
  • ISSN: 0010-437X

How to cite

top

Takeuchi, Kiyohiko. "Some birational maps of Fano 3-folds." Compositio Mathematica 71.3 (1989): 265-283. <http://eudml.org/doc/89976>.

@article{Takeuchi1989,
author = {Takeuchi, Kiyohiko},
journal = {Compositio Mathematica},
keywords = {classification of Fano 3-folds; extremal ray; genus},
language = {eng},
number = {3},
pages = {265-283},
publisher = {Kluwer Academic Publishers},
title = {Some birational maps of Fano 3-folds},
url = {http://eudml.org/doc/89976},
volume = {71},
year = {1989},
}

TY - JOUR
AU - Takeuchi, Kiyohiko
TI - Some birational maps of Fano 3-folds
JO - Compositio Mathematica
PY - 1989
PB - Kluwer Academic Publishers
VL - 71
IS - 3
SP - 265
EP - 283
LA - eng
KW - classification of Fano 3-folds; extremal ray; genus
UR - http://eudml.org/doc/89976
ER -

References

top
  1. 0. E. Bombieri and H.P.F. Swinnerton-Dyer, On the local zeta function of a cubic threefold, Ann. Scuola Norm. Pisa(3) 211-29 (1967). Zbl0153.50501MR212019
  2. 1. V.A. Iskovskih, Fano 3-folds I, Izv. Akad. Nauk SSSR Ser. Mat.41 (1977) 516-562; English transl. in Math. USSR Izv.11 (1977) 485-527. Zbl0382.14013MR463151
  3. 2. V.A. Iskovskih, Fano 3-folds II, Izv. Akad. Nauk SSSR Ser. Mat.42 (1978) 506-549; English transl. in Math. USSR Izv.12 (1978) 469-506. Zbl0407.14016MR503430
  4. 3. V.A. Iskovakih, Anticanonical models of three-dimensional algebraic varieties, Itogi Nauki i Tekniki, Sovremennye Problemy Matematiki, 12 (1979) 59-157; English transl. in J. Soviet Math.13 (1980) 745-814. Zbl0428.14016MR537685
  5. 4. V.A. Iskovskih, Birational automorphisms of three-dimensional algebraic varieties, Itogi Nauki i Tekhniki, Sovremennye Problemy Matematiki, 12 (1979) 159-236; English transl. in J. Soviet Math.13 (1980) 815-868. Zbl0428.14017MR537686
  6. 5. J. Kollár, Flops, to appear in Nagoya Math. J. Zbl0645.14004MR986434
  7. 6. S. Mori, Lecture on extremal rays and Fano 3-folds, Nagoya University, Fall Term 1983-84. 
  8. 7. S. Mori and S. Mukai, On Fano 3-folds with B2 ≽ 2, Advanced Studies in Pure Math.1, Algebraic Varieties and Analytic Varieties, 101-129 (1983). Zbl0537.14026
  9. 8. S. Mori and S. Mukai, Classification of Fano 3-folds with B2 ≽ 2, I, Algebraic and Topological Theories - to the memory of Dr. Takehiko MIYATA, 496-545 (1985). Zbl0800.14021
  10. 9. M. Reid, Minimal models of canonical 3-folds, Advanced Studies in Pure Math.1, Algebraic Varieties and Analytic Varieties, 131-180 (1983). Zbl0558.14028MR715649
  11. 10. M. Reid, Lines on Fano 3-folds according to Shokurov, Report 11 (1980) Mittag-Leffler Institute. 
  12. 11. V.V. Shokurov, The existence of a straight line on Fano 3-folds, Izv. Akad. Nauk SSSR Ser. Mat.43 (1979) 921-963; English transl. in Math. USSR Izv.15 (1980) 173-209. Zbl0444.14027
  13. 12. A.N. Tjurin, The geometry of the Fano surface of the nonsingular cubic F c P4 and Torelli's theorems for Fano surfaces and cubics, Izv. Akad. Nauk SSSR Ser. Mat.35 (1971) 498-529; English transl. in Math. USSR Izv.5 (1971) 517-546. Zbl0252.14004MR285539

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.