Extremal contractions from 4-dimensional manifolds to 3-folds

Yasuyuki Kachi

Annali della Scuola Normale Superiore di Pisa - Classe di Scienze (1997)

  • Volume: 24, Issue: 1, page 63-131
  • ISSN: 0391-173X

How to cite

top

Kachi, Yasuyuki. "Extremal contractions from 4-dimensional manifolds to 3-folds." Annali della Scuola Normale Superiore di Pisa - Classe di Scienze 24.1 (1997): 63-131. <http://eudml.org/doc/84256>.

@article{Kachi1997,
author = {Kachi, Yasuyuki},
journal = {Annali della Scuola Normale Superiore di Pisa - Classe di Scienze},
keywords = {minimal model conjecture; extremal ray; contraction morphism; 3-folds},
language = {eng},
number = {1},
pages = {63-131},
publisher = {Scuola normale superiore},
title = {Extremal contractions from 4-dimensional manifolds to 3-folds},
url = {http://eudml.org/doc/84256},
volume = {24},
year = {1997},
}

TY - JOUR
AU - Kachi, Yasuyuki
TI - Extremal contractions from 4-dimensional manifolds to 3-folds
JO - Annali della Scuola Normale Superiore di Pisa - Classe di Scienze
PY - 1997
PB - Scuola normale superiore
VL - 24
IS - 1
SP - 63
EP - 131
LA - eng
KW - minimal model conjecture; extremal ray; contraction morphism; 3-folds
UR - http://eudml.org/doc/84256
ER -

References

top
  1. [1] T. Ando, On extremal rays of the higher dimensional varieties, Invent. Math.81 (1985), 347-357. Zbl0554.14001MR799271
  2. [2] M. Andreatta - J. Wi, A note on nonvanishing and applications, Duke Math. J.72 (1993), 739-755. Zbl0853.14003MR1253623
  3. [3] M. Andreatta - J. Wi, On good contractions of smooth varieties, preprint (1996). MR1620110
  4. [4] A. Beauville, Variétés de Prym et Jacobiennes intermédiaires, Ann. Sci. École Norm. Sup.10 (1977), 309-391. Zbl0368.14018MR472843
  5. [5] M. Beltrametti, On d-folds whose canonical bundle is not numerically effective, according to Mori and Kawamata, Ann. Mat. Pura. Appl.147 (1987), 151-172. Zbl0633.14021MR916706
  6. [6] F. Campana, Connexité rationnelle des variété de Fano, Ann. Sci. École Norm. Sup.25 (1992), 539-545. Zbl0783.14022MR1191735
  7. [7] V.I. Danilov, Decomposition of certain birational morphisms, Math. USSR.-Izv. 16 (1981), 419-429. Zbl0464.14003
  8. [8] T. Fujita, On Del Pezzofibrations over curves, Osaka Math. J.27 (1990), 229-245. Zbl0715.14030MR1066621
  9. [9] H. Grauert - G. Mülich, Vektorbündel vom rang 2 über dem n-dimensionalen komplex-projektiven raum, Manuscripta. Math. 16 (1975), 75-100. Zbl0318.32027MR382278
  10. [10] P. Ionescu, Generalized adjunction and applications, Math. Proc. Cambridge Philos. Soc. 99 (1986), 457-472. Zbl0619.14004MR830359
  11. [11] V.A. Iskovskikh, Double projection from a line on Fano threefolds of the first kind, Math. USSR.-Sb. 66 (1990), 265-284. Zbl0691.14027MR993458
  12. [12] Y. Kawamata, Elementary contractions of algebraic 3-folds, Ann. of Math. 119 (1984), 95-110. Zbl0542.14007MR736561
  13. [13] Y. Kawamata, The cone of curves of algebraic varieties, Ann. of Math. 119 (1984), 603-633. Zbl0544.14009MR744865
  14. [14] Y. Kawamata, Crepant blowing-up of 3-dimensional canonical singularities and its application to degenerations of surfaces, Ann. of Math. 127 (1988), 93-163. Zbl0651.14005MR924674
  15. [15] Y. Kawamata, Small contractions of four dimensional algebraic manifolds, Math. Ann. 284 (1989), 595-600. Zbl0661.14009MR1006374
  16. [16] Y. Kawamata, On the length of an extremal rational curve, Invent. Math. 105 (1991), 609-611. Zbl0751.14007MR1117153
  17. [17] Y. Kawamata, Semistable minimal models ofthreefolds in positive or mixed characteristic, J. Alg. Geom.3 (1994),463-491. Zbl0823.14026MR1269717
  18. [18] Y. Kawamata - K. Matsuda - K. Matsuki, Introduction to the minimal model problem, in Algebraic Geometry, Sendai 1985, Adv. Stud. Pure Math. vol. 10 (T. Oda ed.), Kinokuniya, 1987, pp. 283-360. Zbl0672.14006MR946243
  19. [19] J. Kollár, Higher direct images of dualizing sheaves I, Ann. of Math. 123 (1986), 11-42. Zbl0598.14015MR825838
  20. [20] J. Kollár, Higher direct images of dualizing sheaves II, Ann. of Math. 124 (1986), 171-202. Zbl0605.14014MR847955
  21. [21] J. Kollár, Flops, Nagoya Math. J.113 (1989), 15-36. Zbl0645.14004MR986434
  22. [22] J. Kollár - Y. Miyaoka - S. Mori, Rational curves on Fano varieties, preprint (1991). Zbl0776.14012MR1180339
  23. [23] J. Kollár - Y. Miyaoka - S. Mori, Rationally connected varieties, J. Alg. Geom.1 (1992), 429-448. Zbl0780.14026MR1158625
  24. [24] J. Kollár - Y. Miyaoka - S. Mori, Rational connectedness and boundedness of Fano manifolds, J. Differential Geom.36 (1992), 765-779. Zbl0759.14032MR1189503
  25. [25] J. Kollár - S. Mori, Classification of three dimensional flips, J. Amer. Math. Soc.5 (1992), 533-703. Zbl0773.14004MR1149195
  26. [26] Y. Miyaoka - S. Mori, A numerical criterion for uniruledness, Ann. of Math.124 (1986), 65-69. Zbl0606.14030MR847952
  27. [27] S. Mori, Projective manifolds with ample tangent bundles, Ann. of Math.110 (1979), 593-606. Zbl0423.14006MR554387
  28. [28] S. Mori, Threefolds whose canonical bundles are not numerically effective, Ann. of Math.116 (1982),133-176. Zbl0557.14021MR662120
  29. [29] S. Mori, On 3-dimensional terminal singularities, Nagoya Math. J.98 (1985), 43-66. Zbl0589.14005MR792770
  30. [30] S. Mori, Flip theorem and the existence of minimal models for 3-folds, J. Amer. Math. Soc.1 (1988), 117-253. Zbl0649.14023MR924704
  31. [31] S. Mori - S. Mukai, On Fano 3-folds with B2 ≽ 2, in Algebraic and Analytic Varieties, Adv. Stud.in Pure Math. vol. 1 (S. Iitaka ed.), Kinokuniys, 1983, pp. 101-129. Zbl0537.14026
  32. [32] S. Mori - S. Mukai, Classification of Fano 3-folds with B2 ≽ 2, I, Alg. and Top. Theories - to the memory of Dr. T.Miyata, 1985, pp. 496-545. Zbl0800.14021
  33. [33] S. Mukai, Biregular classification of Fano 3-folds and Fano manifolds of coindex 3, Proc. Nat. Acad. Sci. USA86 (1989), 3000-3002. Zbl0679.14020MR995400
  34. [34] N. Nakayama, The lower semi-continuity of the plurigenera of complex varieties, in Algebraic Geometry, Sendai 1985, Adv. St. Pure Math. vol. 10 (T. Oda ed.), Kinokuniya, 1987, pp. 551-590. Zbl0649.14003MR946250
  35. [35] C. Okonek - M. Schneider - H. Spindler, Vector bundles on complex projective spaces, Progress in Math.3, Birkhäuser, Boston, 1980. Zbl0438.32016MR561910
  36. [36] H. Pinkham, Factorization of birational maps in dimension 3, Proc. Sympos. Pure Math.40 (1983), 343-371. Zbl0544.14005MR713260
  37. [37] M. Reid, Lines on Fano 3-folds according to Shokurov, preprint (1980). 
  38. [38] M. Reid, Minimal models of canonical 3-folds, in Algebraic and Analytic Varieties, Adv. Stud. in Pure Math. vol. 1 (S. Iitaka ed.), Kinokuniya, 1983, pp. 131-180. Zbl0558.14028MR715649
  39. [39] M. Reid, Projective morphisms according to Kawamata, preprint (1983). MR717617
  40. [40] V.G. Sarkisov, On conic bundle structures, Math. USSR. Izv. 20 (1983), 355-390. Zbl0593.14034MR651652
  41. [41] V.V. Shokurov, The existence of a straight line on Fano 3-folds, Math. USSR.-Izv. 15 (1980), 173-209. Zbl0444.14027
  42. [42] V.V. Shokurov, The nonvanishing theorem, Math. USSR.-Izv. 26 (1986),591-604. Zbl0605.14006
  43. [43] V.V. Shokurov, 3-fold log flips, Math. USSR.-Izv.40 (1993), 95-202. Zbl0785.14023MR1162635
  44. [44] K. Takeuchi, Some birational maps of Fano 3-folds, Compositio Math. 71 (1989),265-283. Zbl0712.14025MR1022045
  45. [45] J. Kollár et al.., Flips and abundance for algebraic threefolds, Astérisque vol. 211, Soc. Math. de France, 1992. Zbl0814.14038MR1225842
  46. [46] A. Van De Ven, On uniform vector bundles, Math. Ann.195 (1972), 245-248. Zbl0215.43202MR291182
  47. [47] P.M.H. Wilson, Fano fourfolds of index greater than one, J. Reine. Angew. Math.379 (1987), 172-181. Zbl0611.14034MR903639
  48. [48] J. Wi, On contraction of extremal rays of Fano manifolds, J. Reine. Angew. Math.417 (1991), 141-157. Zbl0721.14023MR1103910

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.