Représentations modulaires de G L ( 2 , F ) en caractéristique l , F corps p -adique, p l

Marie-France Vignéras

Compositio Mathematica (1989)

  • Volume: 72, Issue: 1, page 33-66
  • ISSN: 0010-437X

How to cite

top

Vignéras, Marie-France. "Représentations modulaires de $GL(2, F)$ en caractéristique $l$, $F$ corps $p$-adique, $p\ne l$." Compositio Mathematica 72.1 (1989): 33-66. <http://eudml.org/doc/89982>.

@article{Vignéras1989,
author = {Vignéras, Marie-France},
journal = {Compositio Mathematica},
keywords = {modular representations; local archimedean field; ; irreducible representations; character; Borel subgroup; cuspidal; Whittaker models; restriction},
language = {fre},
number = {1},
pages = {33-66},
publisher = {Kluwer Academic Publishers},
title = {Représentations modulaires de $GL(2, F)$ en caractéristique $l$, $F$ corps $p$-adique, $p\ne l$},
url = {http://eudml.org/doc/89982},
volume = {72},
year = {1989},
}

TY - JOUR
AU - Vignéras, Marie-France
TI - Représentations modulaires de $GL(2, F)$ en caractéristique $l$, $F$ corps $p$-adique, $p\ne l$
JO - Compositio Mathematica
PY - 1989
PB - Kluwer Academic Publishers
VL - 72
IS - 1
SP - 33
EP - 66
LA - fre
KW - modular representations; local archimedean field; ; irreducible representations; character; Borel subgroup; cuspidal; Whittaker models; restriction
UR - http://eudml.org/doc/89982
ER -

References

top
  1. I. Bernstein, A. Zelevinski.Representations of the group GL(n, F) over a local field. Russian Math Surveys (1976) vol. 3. Zbl0348.43007
  2. Armand Borel.Admissible Representations of a Semi-Simple Group over a Local Field with Vectors Fixed under an Iwahori Subgroup. Inventiones math: 35, (1976) 233-259. Zbl0334.22012MR444849
  3. Henri Carayol.Représentations cuspidales du groupe linéaire. Ann. Scient. Ec. Norm. Sup.4° série, t.17, (1984) p. 191 à 225. Zbl0549.22009MR760676
  4. William Casselman.Introduction to the theory of admissible representations of p-adic reductive groups. Preprint. Zbl0472.22004
  5. P. Deligne.Formes modulaires et représentations de GL(2). Dans: Modular functions of one variable II. Springer-Verlag Lecture Notes349, 1973. Zbl0271.10032MR347738
  6. Roger Godement.Notes on Jacquet-Langlands theory. The Institute for Advanced Study, 1970. 
  7. Roger Howewith the collaboration of Allen Moy.Harish-Chandra Homomorphism for p-adic groups. CBMS notes 59, Amer. Math. Soc. Providence R.I.1985. Zbl0593.22014MR821216
  8. H. Jacquet, R.P. Langlands.Automorphic Forms on GL(2). Springer-Verlag Lecture Notes114,1970. Zbl0236.12010MR401654
  9. H. Jacquet, I.I. Piatetski-Shapiro, and J. Shalika.Conducteur des représentations du groupe linéaire. Math. Ann.256, 199-214. Zbl0443.22013MR620708
  10. Alain Robert.Modular Representations of the Group GL(2) over a Local Field. Journal of Algebra22, (1972) 386-405. Zbl0241.20033MR304562
  11. John Tate.Number Theory Background, dans Automorphic Forms, Representations and L-functions, Proceedings of Symposia in Pure Mathematics, vol. XXXIII, part 2, A.M.S. Providence Rhode Island, 1979. Zbl0422.12007MR546607
  12. Jean-Pierre Serre.Représentations linéaires des groupes finis. Hermann. Zbl0407.20003
  13. Goro Shimura.Introduction to the arithmetic theory of automorphic functions. Tokyo-Princeton, 1971. Zbl0221.10029MR314766
  14. Marie-France Vignéras.[1] Représentations modulaires de GL(2, F) en caractéristique l, F corps fini de caractéristique p ≠ l. Preprint 1987. [2] Correspondance modulaire galois-quaternions pour un corps p-adique. Preprint 1987. MR939030

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.