Espaces symétriques de Drinfeld et correspondance de Langlands locale

Jean François Dat

Annales scientifiques de l'École Normale Supérieure (2006)

  • Volume: 39, Issue: 1, page 1-74
  • ISSN: 0012-9593

How to cite

top

Dat, Jean François. "Espaces symétriques de Drinfeld et correspondance de Langlands locale." Annales scientifiques de l'École Normale Supérieure 39.1 (2006): 1-74. <http://eudml.org/doc/82682>.

@article{Dat2006,
author = {Dat, Jean François},
journal = {Annales scientifiques de l'École Normale Supérieure},
language = {fre},
number = {1},
pages = {1-74},
publisher = {Elsevier},
title = {Espaces symétriques de Drinfeld et correspondance de Langlands locale},
url = {http://eudml.org/doc/82682},
volume = {39},
year = {2006},
}

TY - JOUR
AU - Dat, Jean François
TI - Espaces symétriques de Drinfeld et correspondance de Langlands locale
JO - Annales scientifiques de l'École Normale Supérieure
PY - 2006
PB - Elsevier
VL - 39
IS - 1
SP - 1
EP - 74
LA - fre
UR - http://eudml.org/doc/82682
ER -

References

top
  1. [1] Bernstein J., Beilinson A., Deligne P., Analyse et topologie sur les espaces singuliers (I : Faisceaux Pervers), Astérisque, 100. Zbl0536.14011MR751966
  2. [2] Berkovich V.G., Étale cohomology for non-archimedean analytic spaces, Publ. Math. IHÉS78 (1993) 1-159. Zbl0804.32019MR1259429
  3. [3] Berkovich V.G., Vanishing cycles for formal schemes, Invent. Math.115 (1994) 539-571. Zbl0791.14008MR1262943
  4. [4] Berkovich V.G., The automorphism group of the Drinfeld half-space, C. R. Acad. Sci. Paris321 (1995) 1127-1132. Zbl0856.14007MR1360770
  5. [5] Berkovich V.G., Etale equivariant sheaves on p-adic analytic spaces, 1995. 
  6. [6] Berkovich V.G., On the comparison theorem for etale cohomology of non-archimedean analytic spaces, Israel J. Math.92 (1995) 45-60. Zbl0864.14011MR1357745
  7. [7] Berkovich V.G., Vanishing cycles for formal schemes II, Invent. Math.125 (1996) 367-390. Zbl0852.14002MR1395723
  8. [8] Bernstein I.N., Zelevinski A.V., Induced representations of reductive p-adic groups, Ann. Sci. École Norm. Sup.10 (1977) 441-472. Zbl0412.22015MR579172
  9. [9] Bernstein J., Le centre de Bernstein, in: Bernstein J., Deligne P., Kazhdan D., Vignéras M.F. (Eds.), Représentations des groupes réductifs sur un corps local, Travaux en cours, Hermann, Paris, 1984. Zbl0599.22016MR771671
  10. [10] Boutot J.-F., Carayol H., Uniformisation p-adique des courbes de Shimura : les théorèmes de Cerednik et Drinfeld, in: Courbes modulaires et courbes de Shimura, Astérisque, vols. 196–197, SMF, Paris, 1991, pp. 45-158. Zbl0781.14010MR1141456
  11. [11] Brown K.S., Cohomology of Groups, Graduate Texts Math., vol. 87, Springer, Berlin, 1982. Zbl0584.20036MR672956
  12. [12] Bruhat F., Tits J., Groupes réductifs sur un corps local I, vol. 41, IHÉS, 1972. Zbl0254.14017MR327923
  13. [13] Carayol J.S., Non-abelian Lubin–Tate theory, in: Clozel L., Milne J.S. (Eds.), Automorphic Forms, Shimura Varieties and L-Functions, vol. II, Academic Press, New York, 1990, pp. 15-39. Zbl0704.11049
  14. [14] Dat J.-F., ν-tempered representations of p-adic groups I: l-adic case, Duke Math. J.126 (3) (2005) 397-469. Zbl1063.22017
  15. [15] Deligne P., Théorèmes de Lefschetz et critères de dégénérescence de suites spectrales, Publ. Math. IHÉS35 (1968) 259-278. Zbl0159.22501MR244265
  16. [16] Deligne P., Les constantes des équations fonctionnelles des fonctions L, in: Modular Functions of One Variable II, Lecture Notes in Math., vol. 349, Springer, Berlin, 1972, pp. 501-597. Zbl0271.14011MR349635
  17. [17] Drinfeld V.G., Elliptic modules, Math. USSR Sb.23 (1974) 561-592. Zbl0321.14014
  18. [18] Faltings G., A relation between two moduli spaces studied by Drinfeld, in: Algebraic Number Theory and Algebraic Geometry, Contemp. Math., vol. 300, 2002, pp. 115-129. Zbl1062.14059MR1936369
  19. [19] Fargues L., Cohomologie d'espaces de modules de groupes p-divisibles et correspondances de Langlands locale, in: Astérisque, vol. 291, SMF, Paris, 2003. Zbl1196.11087MR2074714
  20. [20] Harris M., Supercuspidal representations in the cohomology of Drinfeld's upper half space; elaboration of Carayol's program, Invent. Math.129 (1997) 75-119. Zbl0886.11029MR1464867
  21. [21] Harris M., Cohomological automorphic forms on GL n , J. Math. Kyoto Univ.39 (1999) 299-318. Zbl1017.11026MR1709295
  22. [22] Harris M., Taylor R., The Geometry and Cohomology of Some Simple Shimura Varieties, in: Ann. of Math. Stud., vol. 151, Princeton University Press, Princeton, NJ, 2001. Zbl1036.11027MR1876802
  23. [23] Hausberger T., Uniformisation des variétés de Laumon–Rapoport–Stuhler et preuve de la conjecture de Drinfeld–Carayol, Ann. Inst. Fourier55 (4) (2005) 1285-1371. Zbl1138.11329MR2157169
  24. [24] Henniart G., Une preuve simple des conjectures de Langlands pour GL n sur un corpsp-adique, Invent. Math.139 (2000) 439-455. Zbl1048.11092MR1738446
  25. [25] Henniart G., Sur la conjecture de Langlands locale pour GL n , J. Théorie Nombres Bordeaux13 (2001) 167-187. Zbl1048.11093MR1838079
  26. [26] Henniart G., Une caractérisation de la correspondance de Langlands locale pour GL n , Bull. Soc. math. France130 (4) (2002) 587-602. Zbl1029.22023MR1947454
  27. [27] Huber R., A comparison theorem for l-adic cohomology, Compositio Math.112 (1998) 217-235. Zbl0930.14010MR1626021
  28. [28] Illusie L., Autour du théorème de monodromie locale, in: Périodes p-adiques, Astérisque, vol. 223, SMF, Paris, 1994, pp. 9-57. Zbl0837.14013MR1293970
  29. [29] Ito T., Weight-monodromy conjecture for p-adically uniformized varieties, Invent. Math.159 (3) (2005) 607-656. Zbl1154.14014MR2125735
  30. [30] Jannsen U., Continuous étale cohomology, Math. Ann.280 (1988) 207-245. Zbl0649.14011MR929536
  31. [31] Laumon G., Rapoport M., Stuhler U., D-elliptic sheaves and the Langlands correspondence, Invent. Math.113 (1993) 217-338. Zbl0809.11032MR1228127
  32. [32] Mustafin G.A., Nonarchimedean uniformization, Math. USSR Sb.34 (1978) 187-214. Zbl0411.14006
  33. [33] Orlik S., The cohomology of period domains for reductive groups over local fields, Preprint, University Leipzig, 2002. Zbl1093.14065MR2198221
  34. [34] Orlik S., On extensions of generalized Steinberg representations, J. Algebra293 (2) (2005) 611-630. Zbl1080.22008MR2173717
  35. [35] Rapoport M., Zink T., Über die lokale Zetafunktion von Shimuravarietäten, Monodromiefiltration und verschwindende Zyklen in ungleicher Characteristik, Invent. Math.68 (1982) 21-101. Zbl0498.14010MR666636
  36. [36] Rodier F., Décomposition de la série principale d'un groupe réductif p-adique ?, in: Lecture Notes in Math., vol. 880, Springer, Berlin, 1981, pp. 408-424. Zbl0465.22009MR644842
  37. [37] Saito T., Weight spectral sequences and independence of l, J. Institut Math. Jussieu1 (4) (2002). Zbl1084.14027MR2006800
  38. [38] Schneider P., Stuhler U., The cohomology of p-adic symmetric spaces, Invent. Math.105 (1991) 47-122. Zbl0751.14016MR1109620
  39. [39] Schneider P., Stuhler U., Resolutions for smooth representations of p-adic GL n , J. reine angew. Math.436 (1993) 19-32. Zbl0780.20026MR1207278
  40. [40] Schneider P., Stuhler U., Representation theory and sheaves on the Bruhat–Tits building, Publ. Math. IHÉS85 (1995) 97-191. Zbl0892.22012MR1471867
  41. [41] SGA5, Cohomologie l-adique et fonctions L, in: Illusie L. (Ed.), Séminaire de Géometrie Algébrique du Bois-Marie 1865–1966 (SGA5), Lecture Notes in Math., vol. 589, Springer, Berlin, 1977, pp. xii + 484. Zbl0345.00011MR491704
  42. [42] Vignéras M.-F., Représentations modulaires de GL ( 2 , F ) en caractéristiquel, F corps p-adique, p l , Composito Math.72 (1989) 33-66. Zbl0706.22014MR1026328
  43. [43] Vignéras M.-F., Cohomology of sheaves on the building, Invent. Math.127 (1997) 349-373. Zbl0872.20042MR1427623
  44. [44] Vignéras M.-F., Modular representations of p-adic groups, ICMIII (2002) 667-677. Zbl1151.11325MR1957074
  45. [45] Vignéras M.-F., Représentations l-modulaires d'un groupe p-adique avec l différent de p, in: Progress in Math., vol. 137, Birkhäuser, Basel, 1996. Zbl0859.22001MR1395151

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.