Rigidity for variations of Hodge structure and Arakelov-type finiteness theorems
Compositio Mathematica (1990)
- Volume: 75, Issue: 1, page 113-126
- ISSN: 0010-437X
Access Full Article
topHow to cite
topPeters, C. A. M.. "Rigidity for variations of Hodge structure and Arakelov-type finiteness theorems." Compositio Mathematica 75.1 (1990): 113-126. <http://eudml.org/doc/90026>.
@article{Peters1990,
author = {Peters, C. A. M.},
journal = {Compositio Mathematica},
keywords = {rigid family of -dimensional polarized abelian varieties; polarized variation of Hodge structure; non-rigid deformation of period maps; Arakelov theorem; non-trivial deformations of families of curves over punctured curves; -surfaces; Enriques surfaces},
language = {eng},
number = {1},
pages = {113-126},
publisher = {Kluwer Academic Publishers},
title = {Rigidity for variations of Hodge structure and Arakelov-type finiteness theorems},
url = {http://eudml.org/doc/90026},
volume = {75},
year = {1990},
}
TY - JOUR
AU - Peters, C. A. M.
TI - Rigidity for variations of Hodge structure and Arakelov-type finiteness theorems
JO - Compositio Mathematica
PY - 1990
PB - Kluwer Academic Publishers
VL - 75
IS - 1
SP - 113
EP - 126
LA - eng
KW - rigid family of -dimensional polarized abelian varieties; polarized variation of Hodge structure; non-rigid deformation of period maps; Arakelov theorem; non-trivial deformations of families of curves over punctured curves; -surfaces; Enriques surfaces
UR - http://eudml.org/doc/90026
ER -
References
top- [A] Arakelov, A., Families of algebraic curves with fixed degeneracies, Izv. Ak. Nauk. S.S.SR., ser. Math.35 (1971) [Math. U.S.S.R. Izv.5, 1277-1302 (1971)]. Zbl0248.14004MR321933
- [C-D] Carlson, J., Donagi, R., Hypersurface variations are maximal I. Inv. Math.89 (1987) 371-374. Zbl0639.14003MR894385
- [C-T] Carlson, J., Toledo, D., Integral manifolds, harmonic mappings, and the abelian subspace problem, in: Springer Lect. Notes in Math.1352, 1989. Zbl0662.58012MR981818
- [D1] Deligne, P., Travaux de Griffiths. Sem. Bourbaki Exp.1969 /1970 Exp. 376. Zbl0208.48601
- [D2] Deligne, P., Un théorème de finitude pour la monodromie, in "Discrete groups in geometry and analysis" Progr. in Math.67, Birkh. 1987, p. 1-19. Zbl0656.14010MR900821
- [F] Faltings, G., Arakelov's Theorem for abelian varieties, Inv. Math.7, 3, 337-348 (1983). Zbl0588.14025MR718934
- [F1] Flenner, H., The infinitesimal Torelli problem for zero sets of sections of vector bundles, Math. Zeitschr.193, 307-322. Zbl0613.14010MR856158
- [G] Griffiths, P., Periods of integrals on algebraic manifolds IIIPubl. Math. I.H.E.S.38, 125-180 (1970). Zbl0212.53503MR282990
- [G, S] Griffiths, P., Schmid, W., Locally homogeneous complex manifolds. Acta Math.123, 253-302 (1969). Zbl0209.25701MR259958
- [N] Namba, M., On maximal families of compact complex submanifolds of complex manifolds, Tohoku Math. J.24, 581-609 (1972). Zbl0254.32023MR328129
- [P1] Peters, C., A criterion for flatness of Hodge bundles and geometric applications, Math. Ann.268, 1-19 (1984). Zbl0548.14004MR744325
- [P2] Peters, C., On Arakelov's finiteness theorem for higher dimensional manifolds, Rend. Sem. Mat. Univ. e Polit. Torino, Convegno su Algebraic Varieties of small codimension, 43-50, 1986. Zbl0621.14025MR908910
- [P-S] Peters, C., Steenbrink, J., Infinitesimal variations of Hodge structure and the generic Torelli problem for projective hypersurfaces. Progress in Math. # 30 Birkh. Verl., Boston1983, 399-463. Zbl0523.14009MR728615
- [S] Schmid, W., Variation of Hodge structure: the singularities of the period mapping, Inv. Math.22, 211-319 (1974). Zbl0278.14003MR382272
- [Si] Simpson, C., Arakelov's Theorem for Hodge structures, preprint 1985/86.
- [Su] Sunada, T., Holomorphic mappings into a compact quotient of symmetric bounded domain, Nag. Math. J.64, 159-175 (1976). Zbl0352.32030MR419848
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.