Travaux de Griffiths

Pierre Deligne

Séminaire Bourbaki (1969-1970)

  • Volume: 12, page 213-237
  • ISSN: 0303-1179

How to cite


Deligne, Pierre. "Travaux de Griffiths." Séminaire Bourbaki 12 (1969-1970): 213-237. <>.

author = {Deligne, Pierre},
journal = {Séminaire Bourbaki},
language = {fre},
pages = {213-237},
publisher = {Springer-Verlag},
title = {Travaux de Griffiths},
url = {},
volume = {12},
year = {1969-1970},

AU - Deligne, Pierre
TI - Travaux de Griffiths
JO - Séminaire Bourbaki
PY - 1969-1970
PB - Springer-Verlag
VL - 12
SP - 213
EP - 237
LA - fre
UR -
ER -


  1. [1] P.A. Griffiths - Periods of integrals on algebraic manifolds. I (Construction and properties of the modular Varieties), Am. J. Math., XC 2, 1968, p. 568-626. II, Am. J. Math., XC 3, 1968, p. 805-865. III (Some global differential-geometric properties of the period mapping), à paraître aux Publ. I.H.E.S. Zbl0169.52303MR229641
  2. [2] P.A. Griffiths - Some results on Moduli and Periods of Integrals on Algebraic Manifolds III, Notes miméographiées de Princeton. 
  3. [3] P.A. Griffiths - On the periods of integrals on algebraic manifolds, Rice un. studies, 54, 4, 1968. Cet article résume, sans démonstration [1] I, II. Zbl0188.24801MR242844
  4. [4] P.A. Griffiths - On the periods of certain rational integrals, I, II, Annals of Maths., 90 (1969), p. 460-541. Zbl0215.08103MR260733
  5. III, à paraître aux Annals of Maths. 
  6. [5] P.A. Griffiths - A theorem on periods of integrals on algebraic manifolds, Notes miméographiées de Yale. 
  7. [6] P.A. Griffiths - Some results on algebraic cycles on algebraic manifolds, in Bombay Colloquium1968, OxfordUniversity Press. Zbl0206.49803MR257092
  8. [7] P.A. Griffiths - Periods of integrals on algebraic manifolds (Summary of main results and discussions of open problems and conjectures), Bull. Am. Math. Soc., 75, 2, (1970), p. 228-296. Cet article est très intéressant par les nombreuses conjectures qu'il discute. Zbl0214.19802MR258824
  9. [8] P.A. Griffiths and W. Schmid - Locally homogeneous complex manifolds, Acta Mathematica, 1970, p. 253-302. Zbl0209.25701MR387670
  10. [9] N. Katz - Nilpotent connections and the monodromy theorem, Applications of a results of Turrittin, à paraître aux Publ. I.H.E.S. Zbl0221.14007
  11. [10] N. Katz and T. Oda - On the differentiation of De Rham cohomology classes with respect to parameters, J. Math. Kyoto Univ., 8, 2, 1968, p. 199-213. Zbl0165.54802MR237510

NotesEmbed ?


You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.


Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.