Periods of integrals on algebraic manifolds, III (Some global differential-geometric properties of the period mapping)

Phillip A. Griffiths

Publications Mathématiques de l'IHÉS (1970)

  • Volume: 38, page 125-180
  • ISSN: 0073-8301

How to cite

top

Griffiths, Phillip A.. "Periods of integrals on algebraic manifolds, III (Some global differential-geometric properties of the period mapping)." Publications Mathématiques de l'IHÉS 38 (1970): 125-180. <http://eudml.org/doc/103904>.

@article{Griffiths1970,
author = {Griffiths, Phillip A.},
journal = {Publications Mathématiques de l'IHÉS},
language = {eng},
pages = {125-180},
publisher = {Institut des Hautes Études Scientifiques},
title = {Periods of integrals on algebraic manifolds, III (Some global differential-geometric properties of the period mapping)},
url = {http://eudml.org/doc/103904},
volume = {38},
year = {1970},
}

TY - JOUR
AU - Griffiths, Phillip A.
TI - Periods of integrals on algebraic manifolds, III (Some global differential-geometric properties of the period mapping)
JO - Publications Mathématiques de l'IHÉS
PY - 1970
PB - Institut des Hautes Études Scientifiques
VL - 38
SP - 125
EP - 180
LA - eng
UR - http://eudml.org/doc/103904
ER -

References

top
  1. [1] M. F. ATIYAH, The signature of fibre-bundles, Global Analysis (papers in honor of K. Kodaira), Princeton Univ. Press (1969), 73-89. Zbl0193.52302MR40 #8071
  2. [2] A. BLANCHARD, Sur les variétés analytiques complexes, Ann. Sci. École Norm. Sup., 73 (1956), 157-202. Zbl0073.37503MR19,316e
  3. [3] S. BOCHNER and K. YANO, Curvature and Betti Numbers, Princeton Univ. Press, 1953. Zbl0051.39402MR15,989f
  4. [4] A. BOREL and HARISH-CHANDRA, Arithmetic subgroups of algebraic groups, Ann. of Math., 75 (1962), 485-535. Zbl0107.14804MR26 #5081
  5. [5] A. BOREL and R. NARASIMHAN, Uniqueness conditions for certain holomorphic mappings, Invent. Math., 2 (1966), 247-255. Zbl0145.31802MR35 #414
  6. [6] E. CARTAN, Leçons sur la géométrie des espaces de Riemann, Paris, Gauthier-Villars, 1951. Zbl0044.18401MR13,491e
  7. [7] S. S. CHERN, On holomorphic mappings of Hermitian manifolds of the same dimension, Proc. Symp. in Pure Math., 11, American Mathematical Society, 1968. Zbl0184.31202MR38 #2714
  8. [8] S. S. CHERN, Characteristic classes of Hermitian manifolds, Ann. of Math., 47 (1946), 85-121. Zbl0060.41416MR7,470b
  9. [9] P. DELIGNE, Théorie de Hodge, to appear in Publ. I.H.E.S. Zbl0219.14006
  10. [10] H. GRAUERT, Über Modifikationen und exzeptionelle analytische Mengen, Math. Annalen, 146 (1962), 331-368. Zbl0178.42702MR25 #583
  11. [11] P. A. GRIFFITHS, Periods of integrals on algebraic manifolds, I and II, Amer. Jour. Math., 90 (1968), 568-626 and 805-865. Zbl0169.52303MR37 #5215
  12. [12] P. A. GRIFFITHS, Monodromy of homology and periods of integrals on algebraic manifolds, lecture notes available from Princeton University, 1968. MR39 #4171
  13. [13] P. A. GRIFFITHS, Periods of integrals on algebraic manifolds, Bull. Amer. Math. Soc., 75 (1970), 228-296. Zbl0214.19802
  14. [14] P. A. GRIFFITHS, Some results on algebraic cycles on algebraic manifolds, Algebraic Geometry (papers presented at Bombay Colloquium), Oxford University Press, 1969, 93-191. Zbl0206.49803MR41 #1746
  15. [15] P. A. GRIFFITHS, Periods of certain rational integrals, Ann. of Math., 90 (1969), 460-541. Zbl0215.08103MR41 #5357
  16. [16] P. A. GRIFFITHS and W. SCHMID, Locally homogeneous complex manifolds, Acta Math., 123 (1970), 253-302. Zbl0209.25701MR41 #4587
  17. [17] A. GROTHENDIECK, Un théorème sur les homomorphismes de schémas abéliens, Invent. Math., 2 (1966), 59-78. Zbl0147.20302MR36 #180
  18. [18] A. GROTHENDIECK, On the de Rham cohomology of algebraic varieties, Publ. Math. I.H.E.S., 29 (1966), 95-103. Zbl0145.17602MR33 #7343
  19. [19] R. GUNNING and H. ROSSI, Analytic Functions of Several Variables, Prentice-Hall, 1965. Zbl0141.08601MR31 #4927
  20. [20] H. HIRONAKA, Resolution of singularities of an algebraic variety over a field of characteristic zero, I and II, Ann. of Math., 79 (1964), 109-326. Zbl0122.38603MR33 #7333
  21. [21] F. HIRZEBRUCH, Neue Topologische Methoden in der Algebraischen Geometrie, Springer-Verlag, 1956. Zbl0101.38301MR18,509b
  22. [22] W. V. D. HODGE, The Theory and Applications of Harmonic Integrals, Cambridge University Press, 1959. Zbl0024.39703
  23. [23] J. KING, Families of intermediate Jacobians, thesis at University of California, Berkeley, 1969. 
  24. [24] K. KODAIRA and D. C. SPENCER, On deformations of complex analytic structures, I and II, Ann. of Math., 67 (1958), 328-466. Zbl0128.16901MR22 #3009
  25. [25] M. H. KWACK, Generalization of the big Picard theorem, Ann. of Math., 90 (1969), 13-22. Zbl0179.12103MR39 #4445
  26. [26] S. LEFSCHETZ, L'Analysis Situs et la Géométrie Algébrique, Paris, Gauthier-Villars, 1924. Zbl50.0663.01JFM50.0663.01
  27. [27] D. LIEBERMAN, Higher Picard varieties, Amer. Jour. Math., 90 (1968), 1165-1199. Zbl0183.25401MR39 #217
  28. [28] G. MOSTOW and T. TAMAGAWA, On the compactness of arithmetically defined homogeneous spaces, Ann. of Math., 76 (1962), 446-463. Zbl0196.53201MR25 #5069
  29. [29] C. L. SIEGEL, Analytic functions of several complex variables, lecture notes from Institute for Advanced Study, Princeton, 1962. 
  30. [30] A. WEIL, Variétés Kähleriennes, Paris, Hermann, 1958. Zbl0137.41103

Citations in EuDML Documents

top
  1. Fabio Bardelli, Ciro Ciliberto, Alessandro Verra, Curves of minimal genus on a general abelian variety
  2. Shigeharu Takayama, [unknown]
  3. Eduard Looijenga, Chris Peters, Torelli theorems for Kähler K3 surfaces
  4. Herbert Clemens, The Neron model for families of intermediate jacobians acquiring “algebraic” singularities
  5. Pierre Deligne, Théorie de Hodge : II
  6. Sampei Usui, Torelli theorem for surfaces with p g = c 1 2 = 1 and K ample and with certain type of automorphism
  7. Paolo Cascini, Subsheaves of the cotangent bundle
  8. Christophe Mourougane, Shigeharu Takayama, Hodge metrics and the curvature of higher direct images
  9. Yujiro Kawamata, Characterization of abelian varieties
  10. C. A. M. Peters, Rigidity for variations of Hodge structure and Arakelov-type finiteness theorems

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.