Sur l'équation fonctionnelle de la fonction thêta de Riemann

Laurent Moret-Bailly

Compositio Mathematica (1990)

  • Volume: 75, Issue: 2, page 203-217
  • ISSN: 0010-437X

How to cite

top

Moret-Bailly, Laurent. "Sur l'équation fonctionnelle de la fonction thêta de Riemann." Compositio Mathematica 75.2 (1990): 203-217. <http://eudml.org/doc/90034>.

@article{Moret1990,
author = {Moret-Bailly, Laurent},
journal = {Compositio Mathematica},
keywords = {theta functions; algebraic stack; principally polarized abelian varieties; canonical metrics; arithmetic surfaces},
language = {fre},
number = {2},
pages = {203-217},
publisher = {Kluwer Academic Publishers},
title = {Sur l'équation fonctionnelle de la fonction thêta de Riemann},
url = {http://eudml.org/doc/90034},
volume = {75},
year = {1990},
}

TY - JOUR
AU - Moret-Bailly, Laurent
TI - Sur l'équation fonctionnelle de la fonction thêta de Riemann
JO - Compositio Mathematica
PY - 1990
PB - Kluwer Academic Publishers
VL - 75
IS - 2
SP - 203
EP - 217
LA - fre
KW - theta functions; algebraic stack; principally polarized abelian varieties; canonical metrics; arithmetic surfaces
UR - http://eudml.org/doc/90034
ER -

References

top
  1. 1 Ching-li Chai et G. Faltings, ouvrage en préparation. 
  2. 2 P. Deligne et D. Mumford, The Irreducibility of the Space of Curves of Given Genus, Pub. Math. IHES, vol. 36. Zbl0181.48803
  3. 3 G. Faltings, Calculus on arithmetic surfaces, Ann. of Math.119 (1984), 387-424. Zbl0559.14005MR740897
  4. 4 J. Igusa, Theta Functions, Grundlehren194 (Springer). Zbl0251.14016
  5. 5 N.M. Katz et B. Mazur, Arithmetic Moduli of Elliptic Curves, Ann. of Math. Studies (Princeton) n° 108. Zbl0576.14026
  6. 6 S. Lang, Elliptic Functions (Addison-Wesley). Zbl0316.14001MR409362
  7. 7 L. Moret-Bailly, Pinceaux de variétés abéliennes, Astérisque, vol. 129. Zbl0595.14032MR797982
  8. 8 L. Moret-Bailly, La formule de Noether pour les surfaces arithmétiques, Invent. Math.98 (1989), 491-498. Zbl0727.14014MR1022303
  9. 9 D. Mumford, On the Equations Defining Abelian Varieties I, Invent. Math.1 (1966), 287-354. Zbl0219.14024MR204427
  10. 10 D. Mumford, Tata Lectures on Theta I, Progress in Math. (Birkhâuser), vol. 28. Zbl0509.14049MR688651

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.