Arithmetic aspect of operator algebras

R. J. Plymen; C. W. Leung

Compositio Mathematica (1991)

  • Volume: 77, Issue: 3, page 293-311
  • ISSN: 0010-437X

How to cite

top

Plymen, R. J., and Leung, C. W.. "Arithmetic aspect of operator algebras." Compositio Mathematica 77.3 (1991): 293-311. <http://eudml.org/doc/90075>.

@article{Plymen1991,
author = {Plymen, R. J., Leung, C. W.},
journal = {Compositio Mathematica},
keywords = {cusp form; cuspidal representation; adele group; unitary representation; automorphic forms; -algebra; Chevalley group; Haar measure; Hilbert space; Lie groups; general linear group; special linear group; Knapp-Stein -group; Weyl group; group algebra; intertwining operators; Lefschetz principle; real reductive groups; -adic groups; Levi subgroups; torus; Fourier analysis; Artin reciprocity law},
language = {eng},
number = {3},
pages = {293-311},
publisher = {Kluwer Academic Publishers},
title = {Arithmetic aspect of operator algebras},
url = {http://eudml.org/doc/90075},
volume = {77},
year = {1991},
}

TY - JOUR
AU - Plymen, R. J.
AU - Leung, C. W.
TI - Arithmetic aspect of operator algebras
JO - Compositio Mathematica
PY - 1991
PB - Kluwer Academic Publishers
VL - 77
IS - 3
SP - 293
EP - 311
LA - eng
KW - cusp form; cuspidal representation; adele group; unitary representation; automorphic forms; -algebra; Chevalley group; Haar measure; Hilbert space; Lie groups; general linear group; special linear group; Knapp-Stein -group; Weyl group; group algebra; intertwining operators; Lefschetz principle; real reductive groups; -adic groups; Levi subgroups; torus; Fourier analysis; Artin reciprocity law
UR - http://eudml.org/doc/90075
ER -

References

top
  1. 1 Brown, L.G., Stable isomorphism of hereditary subalgebras of C*-algebras. Pacific J. Math.71 (1977), 335-348. Zbl0362.46042MR454645
  2. 2 Brown, L.G., Green, P., Rieffel, M.A., Stable isomorphism and strong Morita equivalence of C*algebras. Pacific J. Math.71 (1977) 349-363. Zbl0362.46043MR463928
  3. 3 Cartier, P., Representations of p-adic groups: A survey. Proc. Symposia in Pure Math.33 (1977), Part I, 111-155. Zbl0421.22010MR546593
  4. 4 Cassels, J.W.S., Local fields, Cambridge University Press, Cambridge (1986). Zbl0595.12006MR861410
  5. 5 Dixmier, J., C*-algebras. North Holland (1977). Zbl0372.46058MR458185
  6. 6 Gelbart, S. and Shahidi, F., Analytic properties of automorphic L-functions. Academic Press, New York (1988). Zbl0654.10028MR951897
  7. 7 Keys, D., On the decomposition of reducible principal series representations of p-adic Chevalley groups. Pacific J. Math.101 (1982), 351-388. Zbl0438.22010MR675406
  8. 8 Keys, D., Reducibility of unramified unitary principal series representations of p-adic groups and class-1 representations. Math. Ann.260 (1982) 397-402. Zbl0488.22026MR670188
  9. 9 Neukirch, J., Class Field Theory. Springer-Verlag, Berlin (1986). Zbl0587.12001MR819231
  10. 10 Pedersen, G., C*-algebras and their automorphism groups. Academic Press, New York (1979). Zbl0416.46043MR548006
  11. 11 Plymen, R.J., Reduced C*-algebra for reductive p-adic groups. J. Functional Analysis88 (1990) 251-266. Zbl0718.22003MR1038441
  12. 12 Rodier, F., Sur les représentations non ramifiés des groupes reductifs p-adiques; l'exemple de GSp(4). Bull. Soc. Math. France116 (1988) 15-42. Zbl0662.22011MR946277
  13. 13 Serre, J.-P., A course in Arithmetic, G.T.M. vol. 7, Springer-Verlag (1973). Zbl0256.12001MR344216
  14. 14 Serre, J.-P., Linear representations of finite groups, G.T.M. vol. 42, Springer-Verlag (1977). Zbl0355.20006MR450380
  15. 15 Silberger, A., Introduction to harmonic analysis on reductive p-adic groups. Math Notes vol. 23. Princeton University Press, Princeton, N.J. (1979). Zbl0458.22006MR544991
  16. 16 Steinberg, R., Lectures on Chevalley Groups, Yale University Lecture Notes, New Haven, Conn. (1967). MR466335
  17. 17 Wassermann, A., Une démonstration de la conjecture de Connes-Kasparov pour les groupes de Lie linéaires connexes réductifs. C. R. Acad. Sci. Paris304 (1987) 559-562. Zbl0615.22011MR894996
  18. 18 Gelbart, S., Automorphic forms on adele groups. Annals of Mathematics Studies83, Princeton, N.J. (1975). Zbl0329.10018MR379375
  19. 19 Shahidi, F., A proof of Langlands conjecture on Plancherel measures; complementary series for p-adic groups. Ann. Math., to appear. Zbl0780.22005MR1070599
  20. 20 Taibleson, M.H., Fourier analysis on local fields. Mathematical Notes15, Princeton University Press, Princeton, N.J. (1975). Zbl0319.42011MR487295

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.