Arithmetic aspect of operator algebras
Compositio Mathematica (1991)
- Volume: 77, Issue: 3, page 293-311
- ISSN: 0010-437X
Access Full Article
topHow to cite
topPlymen, R. J., and Leung, C. W.. "Arithmetic aspect of operator algebras." Compositio Mathematica 77.3 (1991): 293-311. <http://eudml.org/doc/90075>.
@article{Plymen1991,
author = {Plymen, R. J., Leung, C. W.},
journal = {Compositio Mathematica},
keywords = {cusp form; cuspidal representation; adele group; unitary representation; automorphic forms; -algebra; Chevalley group; Haar measure; Hilbert space; Lie groups; general linear group; special linear group; Knapp-Stein -group; Weyl group; group algebra; intertwining operators; Lefschetz principle; real reductive groups; -adic groups; Levi subgroups; torus; Fourier analysis; Artin reciprocity law},
language = {eng},
number = {3},
pages = {293-311},
publisher = {Kluwer Academic Publishers},
title = {Arithmetic aspect of operator algebras},
url = {http://eudml.org/doc/90075},
volume = {77},
year = {1991},
}
TY - JOUR
AU - Plymen, R. J.
AU - Leung, C. W.
TI - Arithmetic aspect of operator algebras
JO - Compositio Mathematica
PY - 1991
PB - Kluwer Academic Publishers
VL - 77
IS - 3
SP - 293
EP - 311
LA - eng
KW - cusp form; cuspidal representation; adele group; unitary representation; automorphic forms; -algebra; Chevalley group; Haar measure; Hilbert space; Lie groups; general linear group; special linear group; Knapp-Stein -group; Weyl group; group algebra; intertwining operators; Lefschetz principle; real reductive groups; -adic groups; Levi subgroups; torus; Fourier analysis; Artin reciprocity law
UR - http://eudml.org/doc/90075
ER -
References
top- 1 Brown, L.G., Stable isomorphism of hereditary subalgebras of C*-algebras. Pacific J. Math.71 (1977), 335-348. Zbl0362.46042MR454645
- 2 Brown, L.G., Green, P., Rieffel, M.A., Stable isomorphism and strong Morita equivalence of C*algebras. Pacific J. Math.71 (1977) 349-363. Zbl0362.46043MR463928
- 3 Cartier, P., Representations of p-adic groups: A survey. Proc. Symposia in Pure Math.33 (1977), Part I, 111-155. Zbl0421.22010MR546593
- 4 Cassels, J.W.S., Local fields, Cambridge University Press, Cambridge (1986). Zbl0595.12006MR861410
- 5 Dixmier, J., C*-algebras. North Holland (1977). Zbl0372.46058MR458185
- 6 Gelbart, S. and Shahidi, F., Analytic properties of automorphic L-functions. Academic Press, New York (1988). Zbl0654.10028MR951897
- 7 Keys, D., On the decomposition of reducible principal series representations of p-adic Chevalley groups. Pacific J. Math.101 (1982), 351-388. Zbl0438.22010MR675406
- 8 Keys, D., Reducibility of unramified unitary principal series representations of p-adic groups and class-1 representations. Math. Ann.260 (1982) 397-402. Zbl0488.22026MR670188
- 9 Neukirch, J., Class Field Theory. Springer-Verlag, Berlin (1986). Zbl0587.12001MR819231
- 10 Pedersen, G., C*-algebras and their automorphism groups. Academic Press, New York (1979). Zbl0416.46043MR548006
- 11 Plymen, R.J., Reduced C*-algebra for reductive p-adic groups. J. Functional Analysis88 (1990) 251-266. Zbl0718.22003MR1038441
- 12 Rodier, F., Sur les représentations non ramifiés des groupes reductifs p-adiques; l'exemple de GSp(4). Bull. Soc. Math. France116 (1988) 15-42. Zbl0662.22011MR946277
- 13 Serre, J.-P., A course in Arithmetic, G.T.M. vol. 7, Springer-Verlag (1973). Zbl0256.12001MR344216
- 14 Serre, J.-P., Linear representations of finite groups, G.T.M. vol. 42, Springer-Verlag (1977). Zbl0355.20006MR450380
- 15 Silberger, A., Introduction to harmonic analysis on reductive p-adic groups. Math Notes vol. 23. Princeton University Press, Princeton, N.J. (1979). Zbl0458.22006MR544991
- 16 Steinberg, R., Lectures on Chevalley Groups, Yale University Lecture Notes, New Haven, Conn. (1967). MR466335
- 17 Wassermann, A., Une démonstration de la conjecture de Connes-Kasparov pour les groupes de Lie linéaires connexes réductifs. C. R. Acad. Sci. Paris304 (1987) 559-562. Zbl0615.22011MR894996
- 18 Gelbart, S., Automorphic forms on adele groups. Annals of Mathematics Studies83, Princeton, N.J. (1975). Zbl0329.10018MR379375
- 19 Shahidi, F., A proof of Langlands conjecture on Plancherel measures; complementary series for p-adic groups. Ann. Math., to appear. Zbl0780.22005MR1070599
- 20 Taibleson, M.H., Fourier analysis on local fields. Mathematical Notes15, Princeton University Press, Princeton, N.J. (1975). Zbl0319.42011MR487295
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.