Sur les représentations non ramifiées des groupes réductifs p -adiques ; l’exemple de G S p ( 4 )

François Rodier

Bulletin de la Société Mathématique de France (1988)

  • Volume: 116, Issue: 1, page 15-42
  • ISSN: 0037-9484

How to cite

top

Rodier, François. "Sur les représentations non ramifiées des groupes réductifs $p$-adiques ; l’exemple de $GSp(4)$." Bulletin de la Société Mathématique de France 116.1 (1988): 15-42. <http://eudml.org/doc/87546>.

@article{Rodier1988,
author = {Rodier, François},
journal = {Bulletin de la Société Mathématique de France},
keywords = {irreducible non-ramified representations; split reductive groups; local fields; spherical functions},
language = {fre},
number = {1},
pages = {15-42},
publisher = {Société mathématique de France},
title = {Sur les représentations non ramifiées des groupes réductifs $p$-adiques ; l’exemple de $GSp(4)$},
url = {http://eudml.org/doc/87546},
volume = {116},
year = {1988},
}

TY - JOUR
AU - Rodier, François
TI - Sur les représentations non ramifiées des groupes réductifs $p$-adiques ; l’exemple de $GSp(4)$
JO - Bulletin de la Société Mathématique de France
PY - 1988
PB - Société mathématique de France
VL - 116
IS - 1
SP - 15
EP - 42
LA - fre
KW - irreducible non-ramified representations; split reductive groups; local fields; spherical functions
UR - http://eudml.org/doc/87546
ER -

References

top
  1. [Be] BERNSTEIN (I.N.). — Le “centre” de Bernstein, Représentations des groupes réductifs sur un corps local, p. 1-32. — Paris, Hermann, 1984. Zbl0599.22016
  2. [B-Z] BERNSTEIN (I.N.) and ZELEVINSKII (A.V.). — Induced representation of reductive p-adic groups I, Ann. Sci. École Norm. Sup., t. 10, 1977, p. 441-472. Zbl0412.22015MR58 #28310
  3. [Bo] BOREL (A.). — Admissible Representations of a Semisimple Group over a Local Field with Vector Fixed under an Iwahori Subgroup, Invent. Math., t. 35, 1976, p. 233-259. Zbl0334.22012MR56 #3196
  4. [B-W] BOREL (A.) and WALLACH (N.). — Continuous cohomology, discrete subgroups, and representations of reductive groups. — Princeton, Princeton University Press, 1980. Zbl0443.22010MR83c:22018
  5. [B] BOURBAKI (N.). — Groupes et algèbres de Lie, chap. 4, 5 et 6. — Paris, Hermann, 1968. Zbl0483.22001
  6. [B-T] BRUHAT (F.) et TITS (J.). — Groupes réductifs sur un corps local I, Inst. Hautes Études Sci. Publ. Math., t. 41, 1972, p. 1-251. Zbl0254.14017MR48 #6265
  7. [Ca] CARTIER (P.). — Representations of p-adic groups : A survey, Automorphic forms, representations and L-functions, p. 111-155. — Providence, Amer. Math. Soc., 1979 (Proc. Symp. Pure Math., 33). Zbl0421.22010MR81e:22029
  8. [C1] CASSELMAN (W.). — Introduction to the theory of admissible representations of p-adic reductive groups, notes polycopiées. 
  9. [C2] CASSELMAN (W.). — The Steinberg character as a true character, Harmonic Analysis on homogeneous spaces p. 413-417. — Providence, Amer. Math. Soc., 1973 (Proc. Symp. Pure Math., n° 26). Zbl0289.22017MR49 #3039
  10. [C3] CASSELMAN (W.). — The Unramified principal series of p-adic groups I. The spherical function, Comp. Math., t. 40, n° 3, 1980, p. 387-406. Zbl0472.22004MR83a:22018
  11. [G] GINSBURG (V.). — Deligne-Langlands conjecture and representations of affine Hecke algebras, prépublication, 1985. 
  12. [I-W] IWAHORI (N.) and MATSUMOTO (H.). — On some Bruhat decompositions and the structure of the Hecke ring of the p-adic groups, Inst. Hautes Études Sci. Publ. Math., t. 25, 1965, p. 5-48. Zbl0228.20015MR32 #2486
  13. [K] KEYS (D.). — On the decomposition of reducible principal series representations of p-adic Chevalley groups, Pacific J. Math., t. 101, 1982, p. 351-388. Zbl0438.22010MR84d:22032
  14. [K-L] KAZHDAN (D.) and LUSZTIG (G.). — Proof of the Deligne-Langlands conjecture for Hecke algebras, prépublication, 1985. 
  15. [L] LUSZTIG (G.). — Some examples of square integrable representations of semi-simple p-adic groups, Trans. Amer. Math. Soc., t. 277, 1983, p. 623-653. Zbl0526.22015MR84j:22023
  16. [Mcd1] MACDONALD (I.G.). — Spherical functions on a p-adic Chevalley group, Bull. Amer. Math. Soc., t. 74, 1968, p. 520-525. Zbl0273.22012MR36 #5141
  17. [Mcd2] MACDONALD (I.G.). — Spherical functions on a group of p-adic type. — Univ. of Madras, 1971. Zbl0302.43018
  18. [M] MULLER (I.). — Intégrales d'entrelacement pour un groupe de Chevalley sur un corps p-adique, Analyse Harmonique sur les groupes de Lie, p. 367-403. Berlin, Springer-Verlag, 1979 (Lecture Notes in Math. 739). Zbl0477.43010MR81f:22032
  19. [R1] RODIER (F.). — Modèles de Whittaker des représentations admissibles des groupes réductifs p-adiques déployés, C.R. Acad. Sci. Paris Sér. I Math., t. 275, 1972, p. 1045-1048. Zbl0243.22003MR47 #3602
  20. [R2] RODIER (F.). — Décomposition de la série principale des groupes réductifs p-adiques, Non commutative Harmonic Analysis and Lie groups, p. 408-423. Berlin, Springer-Verlag, 1981 (Lecture Notes in Math., 880). Zbl0465.22009MR83i:22029
  21. [T] TADIC (M.). — Classification of unitary representations in irreducible representations of general linear group, Ann. Sci. École Norm. Sup., t. 19, 1986, p. 335-382. Zbl0614.22005MR88b:22021
  22. [Z] ZELEVINSKII (A.V.). — Induced representations of reductive p-adic groups II. On irreducible representations of GL(n), Ann. Sci. École Norm. Sup., t. 13, 1980, p. 165-210. Zbl0441.22014MR83g:22012

Citations in EuDML Documents

top
  1. François Rodier, Errata à l’article «Sur les représentations non ramifiées des groupes réductifs 𝐩 -adiques ; l’exemple de 𝐆𝐒𝐩 ( 4 ) »
  2. R. J. Plymen, C. W. Leung, Arithmetic aspect of operator algebras
  3. Paul J.jun. Sally, Marko Tadic, Induced representations and classification for G S p ( 2 , F ) and S p ( 2 , F )
  4. Mark Reeder, On the Iwahori-spherical discrete series for p -adic Chevalley groups; formal degrees and L -packets
  5. Marko Tadić, Representations of p -adic symplectic groups
  6. Mark Reeder, p -adic Whittaker functions and vector bundles on flag manifolds
  7. Chris Jantzen, On the Iwahori-Matsumoto involution and applications

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.