On the variational Torelli problem for complete intersections
Compositio Mathematica (1991)
- Volume: 78, Issue: 3, page 271-296
- ISSN: 0010-437X
Access Full Article
topHow to cite
topKonno, Kazuhiro. "On the variational Torelli problem for complete intersections." Compositio Mathematica 78.3 (1991): 271-296. <http://eudml.org/doc/90092>.
@article{Konno1991,
author = {Konno, Kazuhiro},
journal = {Compositio Mathematica},
keywords = {infinitesimal variation of Hodge structure; IVHS; Jacobian ring; hypersurfaces; variational Torelli problem; complete intersections; Schottky relations},
language = {eng},
number = {3},
pages = {271-296},
publisher = {Kluwer Academic Publishers},
title = {On the variational Torelli problem for complete intersections},
url = {http://eudml.org/doc/90092},
volume = {78},
year = {1991},
}
TY - JOUR
AU - Konno, Kazuhiro
TI - On the variational Torelli problem for complete intersections
JO - Compositio Mathematica
PY - 1991
PB - Kluwer Academic Publishers
VL - 78
IS - 3
SP - 271
EP - 296
LA - eng
KW - infinitesimal variation of Hodge structure; IVHS; Jacobian ring; hypersurfaces; variational Torelli problem; complete intersections; Schottky relations
UR - http://eudml.org/doc/90092
ER -
References
top- [1] M.F. Atiyah: Complex analytic connections in fibre bundles, Trans. Amer. Math. Soc.85 (1957), 181-207. Zbl0078.16002MR86359
- [2] S. Bloch and D. Gieseker: The positivity of the Chern classes of an ample vector bundle, Invent. Math.12 (1971), 112-117. Zbl0212.53502MR297773
- [3] J. Carlson, M. Green, P.A. Griffiths and J. Harris: Infinitesimal variations of Hodge structures I, Compositio Math.50 (1983), 109-205. Zbl0531.14006MR720288
- [4] J. Carlson and P.A. Griffiths: Infinitesimal variations of Hodge structure and the global Torelli problem, Journées de Géométrie Algébrique d'Anger1979, Sijthoff & Noordoff (1980), 51-76. Zbl0479.14007MR605336
- [5] D. Cox, R. Donagi and L. Tu: Variational Torelli implies generic Torelli, Invent. Math.88 (1987), 439-446. Zbl0594.14011MR880961
- [6] P. Deligne: Theorie de Hodge II, Publ. Math. IHES40 (1971), 5-57. Zbl0219.14007MR498551
- [7] R. Donagi: Generic Torelli for projective hypersurfaces, Compositio Math.50 (1983), 325-353. Zbl0598.14007MR720291
- [8] R. Donagi and L. Tu: Generic Torelli for weighted hypersurfaces, Math. Ann.276 (1987), 399-413. Zbl0588.14003MR875336
- [9] H. Flenner: The infinitesimal Torelli problem for zero sets of sections of vector bundles, Math. Z.193 (1986), 307-322. Zbl0613.14010MR856158
- [10] M. Green: The period map for hypersurface sections of high degree of an arbitrary variety, Compositio Math.55 (1985), 135-156. Zbl0588.14004MR795711
- [11] R. Hartshorne: Ample vector bundles, Publ. Math. IHES.29 (1966), 319-350. Zbl0173.49003MR193092
- [12] Y. Kawamata: On deformations of compactifiable manifolds, Math. Ann.235 (1978), 247-265. Zbl0363.32015MR499279
- [13] K. Konno: Generic Torelli theorem for hypersurfaces of certain compact homogeneous Kähler manifolds, Duke Math. J.59 (1989), 83-160. Zbl0704.14006MR1016881
- [14] S. Mori and H. Sumihiro: On Hartshorne's conjecture, J. Math. Kyoto Univ.18 (1978), 523-533. Zbl0422.14030MR509496
- [15] A. Morimoto: Sur le groupe d'automorphismes d'un espace fibre principal analytique complexe, Nagoya Math. J.13 (1958), 157-178. Zbl0107.28603MR95976
- [16] C. Peters: The local Torelli theorem I: Complete intersections, Math. Ann.217 (1975), 1-16. Zbl0293.14004MR441966
- [17] C. Peters and J.H.M. Steenbrink: Infinitesimal variations of Hodge structure and the generic Torelli problem for projective hypersurfaces, in: Classification of Algebraic and Analytic Manifolds, Progress in Math.39, Birkhäuser (1983), 399-464. Zbl0523.14009
- [18] M.-H. Saito: Weak global Torelli theorem for certain weighted hypersurfaces, Duke Math. J.53 (1986), 67-111. Zbl0606.14031MR835796
- [19] B. Shiffman and A.J. Sommese: Vanishing Theorems on Complex Manifolds, Progress in Math. 56, Birkhäuser (1985). Zbl0578.32055MR782484
- [20] T. Terasoma: Infinitesimal variation of Hodge structures and the weak global Torelli theorem for complete intersections, to appear in Ann. of Math. Zbl0732.14005MR1070597
- [21] S. Usui: Local Torelli theorem for non-singular complete intersections, Japan J. Math.2-2 (1976), 411-418. Zbl0347.14007MR450274
Citations in EuDML Documents
topNotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.