On the variational Torelli problem for complete intersections

Kazuhiro Konno

Compositio Mathematica (1991)

  • Volume: 78, Issue: 3, page 271-296
  • ISSN: 0010-437X

How to cite


Konno, Kazuhiro. "On the variational Torelli problem for complete intersections." Compositio Mathematica 78.3 (1991): 271-296. <http://eudml.org/doc/90092>.

author = {Konno, Kazuhiro},
journal = {Compositio Mathematica},
keywords = {infinitesimal variation of Hodge structure; IVHS; Jacobian ring; hypersurfaces; variational Torelli problem; complete intersections; Schottky relations},
language = {eng},
number = {3},
pages = {271-296},
publisher = {Kluwer Academic Publishers},
title = {On the variational Torelli problem for complete intersections},
url = {http://eudml.org/doc/90092},
volume = {78},
year = {1991},

AU - Konno, Kazuhiro
TI - On the variational Torelli problem for complete intersections
JO - Compositio Mathematica
PY - 1991
PB - Kluwer Academic Publishers
VL - 78
IS - 3
SP - 271
EP - 296
LA - eng
KW - infinitesimal variation of Hodge structure; IVHS; Jacobian ring; hypersurfaces; variational Torelli problem; complete intersections; Schottky relations
UR - http://eudml.org/doc/90092
ER -


  1. [1] M.F. Atiyah: Complex analytic connections in fibre bundles, Trans. Amer. Math. Soc.85 (1957), 181-207. Zbl0078.16002MR86359
  2. [2] S. Bloch and D. Gieseker: The positivity of the Chern classes of an ample vector bundle, Invent. Math.12 (1971), 112-117. Zbl0212.53502MR297773
  3. [3] J. Carlson, M. Green, P.A. Griffiths and J. Harris: Infinitesimal variations of Hodge structures I, Compositio Math.50 (1983), 109-205. Zbl0531.14006MR720288
  4. [4] J. Carlson and P.A. Griffiths: Infinitesimal variations of Hodge structure and the global Torelli problem, Journées de Géométrie Algébrique d'Anger1979, Sijthoff & Noordoff (1980), 51-76. Zbl0479.14007MR605336
  5. [5] D. Cox, R. Donagi and L. Tu: Variational Torelli implies generic Torelli, Invent. Math.88 (1987), 439-446. Zbl0594.14011MR880961
  6. [6] P. Deligne: Theorie de Hodge II, Publ. Math. IHES40 (1971), 5-57. Zbl0219.14007MR498551
  7. [7] R. Donagi: Generic Torelli for projective hypersurfaces, Compositio Math.50 (1983), 325-353. Zbl0598.14007MR720291
  8. [8] R. Donagi and L. Tu: Generic Torelli for weighted hypersurfaces, Math. Ann.276 (1987), 399-413. Zbl0588.14003MR875336
  9. [9] H. Flenner: The infinitesimal Torelli problem for zero sets of sections of vector bundles, Math. Z.193 (1986), 307-322. Zbl0613.14010MR856158
  10. [10] M. Green: The period map for hypersurface sections of high degree of an arbitrary variety, Compositio Math.55 (1985), 135-156. Zbl0588.14004MR795711
  11. [11] R. Hartshorne: Ample vector bundles, Publ. Math. IHES.29 (1966), 319-350. Zbl0173.49003MR193092
  12. [12] Y. Kawamata: On deformations of compactifiable manifolds, Math. Ann.235 (1978), 247-265. Zbl0363.32015MR499279
  13. [13] K. Konno: Generic Torelli theorem for hypersurfaces of certain compact homogeneous Kähler manifolds, Duke Math. J.59 (1989), 83-160. Zbl0704.14006MR1016881
  14. [14] S. Mori and H. Sumihiro: On Hartshorne's conjecture, J. Math. Kyoto Univ.18 (1978), 523-533. Zbl0422.14030MR509496
  15. [15] A. Morimoto: Sur le groupe d'automorphismes d'un espace fibre principal analytique complexe, Nagoya Math. J.13 (1958), 157-178. Zbl0107.28603MR95976
  16. [16] C. Peters: The local Torelli theorem I: Complete intersections, Math. Ann.217 (1975), 1-16. Zbl0293.14004MR441966
  17. [17] C. Peters and J.H.M. Steenbrink: Infinitesimal variations of Hodge structure and the generic Torelli problem for projective hypersurfaces, in: Classification of Algebraic and Analytic Manifolds, Progress in Math.39, Birkhäuser (1983), 399-464. Zbl0523.14009
  18. [18] M.-H. Saito: Weak global Torelli theorem for certain weighted hypersurfaces, Duke Math. J.53 (1986), 67-111. Zbl0606.14031MR835796
  19. [19] B. Shiffman and A.J. Sommese: Vanishing Theorems on Complex Manifolds, Progress in Math. 56, Birkhäuser (1985). Zbl0578.32055MR782484
  20. [20] T. Terasoma: Infinitesimal variation of Hodge structures and the weak global Torelli theorem for complete intersections, to appear in Ann. of Math. Zbl0732.14005MR1070597
  21. [21] S. Usui: Local Torelli theorem for non-singular complete intersections, Japan J. Math.2-2 (1976), 411-418. Zbl0347.14007MR450274

NotesEmbed ?


You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.


Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.