On the period map for abelian covers of projective varieties

Rita Pardini

Annali della Scuola Normale Superiore di Pisa - Classe di Scienze (1998)

  • Volume: 26, Issue: 4, page 719-735
  • ISSN: 0391-173X

How to cite

top

Pardini, Rita. "On the period map for abelian covers of projective varieties." Annali della Scuola Normale Superiore di Pisa - Classe di Scienze 26.4 (1998): 719-735. <http://eudml.org/doc/84345>.

@article{Pardini1998,
author = {Pardini, Rita},
journal = {Annali della Scuola Normale Superiore di Pisa - Classe di Scienze},
language = {eng},
number = {4},
pages = {719-735},
publisher = {Scuola normale superiore},
title = {On the period map for abelian covers of projective varieties},
url = {http://eudml.org/doc/84345},
volume = {26},
year = {1998},
}

TY - JOUR
AU - Pardini, Rita
TI - On the period map for abelian covers of projective varieties
JO - Annali della Scuola Normale Superiore di Pisa - Classe di Scienze
PY - 1998
PB - Scuola normale superiore
VL - 26
IS - 4
SP - 719
EP - 735
LA - eng
UR - http://eudml.org/doc/84345
ER -

References

top
  1. [1] D. Cox - R. Donagi - L. Tu, Variational Torelli Implies Generic Torelli, Invent. Math.88 (1987), 439-446. Zbl0594.14011MR880961
  2. [2] J. Carlson - P. Griffiths, Infinitesimal Variations of Hodge Structure (I), Compositio Math.50 (1983), 109-205. Zbl0531.14006MR720288
  3. [3] R. Donagi, Generic Torelli for Projective Hypersurfaces, Compositio Math.50 (1983), 325-353. Zbl0598.14007MR720291
  4. [4] H. Esnault - E. Viehweg, "Lectures on Vanishing Theorems", DMV Seminar, Band 20, Birkhäuser, 1992. Zbl0779.14003MR1193913
  5. [5] L. Ein - R. Lazarsfeld, Syzygies and Koszul Cohomology of Smooth Projective Varieties of Arbitrary Dimension, Invent. Math.111 (1993), 51-67. Zbl0814.14040MR1193597
  6. [6] B. Fantechi - R. Pardini, Automorphisms and Moduli Spaces of Varieties with Ample Canonical Class Via Deformations of Abelian Covers, Comm. in Algebra25 (5) (1997), 1413-1442. Zbl0918.14006MR1444010
  7. [7] H. Flenner, The Infinitesimal Torelli Problem for Zero Sets of Sections of Vector Bundles, Math. Z.193 (1986), 307-322. Zbl0613.14010MR856158
  8. [8] M. Green - J. Murre - C. Voisin, "Algebraic Cycles and Hodge Theory", C.I.M.E. notes Torino 1993, Lecture Notes in Math. 1594Springer, Berlin, 1993. MR1335238
  9. [9] M. Green, The Period Map for Hypersurface Sections of High Degree of an Arbitrary Variety, Compositio Math.55 (1984), 135-156. Zbl0588.14004MR795711
  10. [10] R. Hartshorne, "Algebraic Geometry", GTM52, Springer1977. Zbl0367.14001MR463157
  11. [11] K. Ivinskis, A Variational Torelli Theorem for Cyclic Coverings of High Degree, Compositio Math.85 (1993), 201-228. Zbl0812.14005MR1204780
  12. [12] K. Konno, On deformations and the local Torelli problem of cyclic coverings, Math. Ann.271 (1985), 601-617. Zbl0539.14009MR790117
  13. [13] K. Konno, On the variational Torelli problem for complete intersections, Compositio Math.78 (1991), 271-296. Zbl0737.14002MR1106298
  14. [14] K. Konno, Infinitesimal Torelli for complete intersections in certain homogeneous Kähler manifolds, Tohoku Math. J.38 (1986), 609-624. Zbl0627.14009MR867067
  15. [15] D. Lieberman - R. Wilsker - C. Peters, A Theorem of Local Torelli Type, Math. Ann.231 (1977), 39-45. Zbl0367.14006MR499326
  16. [16] R. Pardini, Abelian Covers of Algebraic Varieties, J. Reine Angew. Math.417 (1991), 191-213. Zbl0721.14009MR1103912
  17. [17] R. Pardini, Infinitesimal Torelli and Abelian Covers of Algebraic Surfaces, in "Problems in the theory of surfaces and their classification", F. Catanese, C. Ciliberto and M. Comalba (eds.), Symp. Math. INDAM XXXII, Academic Press, 1991. Zbl0827.14006MR1273381
  18. [18] C. Peters, The Local Torelli Theorem II. Cyclic Branched Coverings, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4) 3 (1976), 321-340. Zbl0329.14011MR441968
  19. [19] B. Schiffman - A. Sommese, Vanishing Theorems on Complex Manifolds, Progr. in Math.56, Birkhäuser, 1985. Zbl0578.32055MR782484
  20. [20] J. Wehler, Cyclic Coverings: Deformation and Torelli Theorem, Math. Ann.274 (1986), 443-472. Zbl0593.32017MR842625

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.