A geometrical approach to the theory of Jacobi forms

Jürg Kramer

Compositio Mathematica (1991)

  • Volume: 79, Issue: 1, page 1-19
  • ISSN: 0010-437X

How to cite

top

Kramer, Jürg. "A geometrical approach to the theory of Jacobi forms." Compositio Mathematica 79.1 (1991): 1-19. <http://eudml.org/doc/90097>.

@article{Kramer1991,
author = {Kramer, Jürg},
journal = {Compositio Mathematica},
keywords = {theta series; Jacobi forms; elliptic modular surface; Kodaira-Vanishing- Theorem; Riemann-Roch-Theorem; explicit formula; dimension; space of Jacobi cusp forms},
language = {eng},
number = {1},
pages = {1-19},
publisher = {Kluwer Academic Publishers},
title = {A geometrical approach to the theory of Jacobi forms},
url = {http://eudml.org/doc/90097},
volume = {79},
year = {1991},
}

TY - JOUR
AU - Kramer, Jürg
TI - A geometrical approach to the theory of Jacobi forms
JO - Compositio Mathematica
PY - 1991
PB - Kluwer Academic Publishers
VL - 79
IS - 1
SP - 1
EP - 19
LA - eng
KW - theta series; Jacobi forms; elliptic modular surface; Kodaira-Vanishing- Theorem; Riemann-Roch-Theorem; explicit formula; dimension; space of Jacobi cusp forms
UR - http://eudml.org/doc/90097
ER -

References

top
  1. [1] T.M. Apostol, Modular Functions and Dirichlet Series in Number Theory, Graduate Texts in Math. 41, Springer-Verlag, Berlin-Heidelberg -New York (1976). Zbl0332.10017MR422157
  2. [2] A. Ash, D. Mumford, M. Rapoport, Y. Tai, Smooth Compactification of Locally Symmetric Varieties, Brookline, Massachusetts. Zbl0334.14007
  3. [3] R. Berndt, Meromorphe Funktionen auf Mumford's Kompaktifizierung der universellen elliptischen Kurve N-ter Stufe, J. reine und angew. Math. 326 (1981), 95-103. Zbl0456.12009MR711467
  4. [4] M. Eichler, D. Zagier, On the theory of Jacobi forms, Progress in Math.55, Birkhäuser- Verlag, Boston- Basel-Stuttgart (1984). Zbl0554.10018MR781735
  5. [5] K. Kodaira, On compact analytic surfaces II, III, Ann. of Math.77 (1963), 563-626, 78 (1963), 1-40. Zbl0171.19601MR184257
  6. [6] J. Kramer, Jacobiformen und Thetareihen, Manuscripta Math.54 (1986), 279-322. Zbl0588.10024MR819403
  7. [7] D. Mumford, Abelian Varieties, Oxford University Press (1970). Zbl0223.14022MR282985
  8. [8] D. Mumford, Tata Lectures on Theta I, Progress in Math.28, Birkhäuser-Verlag, Boston- Basel-Stuttgart (1983). Zbl0509.14049MR688651
  9. [9] T. Shioda, On elliptic modular surfaces, J. Math. Soc. Japan, Vol. 24, No. 1 (1972), 20-59. Zbl0226.14013MR429918
  10. [10] N.-P. Skoruppa, The Dimensions of the Spaces of Jacobi Forms, Preprint (1989). 
  11. [11] N.-P. Skoruppa, D. Zagier, A trace formula for Jacobi Forms, J. reine und angew. Math. (to appear). Zbl0651.10019MR972365
  12. [12] Séminaire de Géométrie Algébrique du Bois-Marie 1965-66 SGA 5: Cohomologie 1-adique et Fonctions L, Lecture Notes in Math. 589, Springer-Verlag, Berlin-Heidelberg - New York (1977). Zbl0345.00011

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.