Asymptotic behaviour of supercuspidal characters of p -adic 𝐆𝐒𝐩 ( 4 )

Fiona Murnaghan

Compositio Mathematica (1991)

  • Volume: 80, Issue: 1, page 15-54
  • ISSN: 0010-437X

How to cite

top

Murnaghan, Fiona. "Asymptotic behaviour of supercuspidal characters of $p$-adic $\mathrm {\mathbf {GSp}}_{(4)}$." Compositio Mathematica 80.1 (1991): 15-54. <http://eudml.org/doc/90112>.

@article{Murnaghan1991,
author = {Murnaghan, Fiona},
journal = {Compositio Mathematica},
keywords = {character; irreducible supercuspidal representation; Fourier transforms; nilpotent measures; Lie algebra; weighted orbital integral; matrix coefficients},
language = {eng},
number = {1},
pages = {15-54},
publisher = {Kluwer Academic Publishers},
title = {Asymptotic behaviour of supercuspidal characters of $p$-adic $\mathrm \{\mathbf \{GSp\}\}_\{(4)\}$},
url = {http://eudml.org/doc/90112},
volume = {80},
year = {1991},
}

TY - JOUR
AU - Murnaghan, Fiona
TI - Asymptotic behaviour of supercuspidal characters of $p$-adic $\mathrm {\mathbf {GSp}}_{(4)}$
JO - Compositio Mathematica
PY - 1991
PB - Kluwer Academic Publishers
VL - 80
IS - 1
SP - 15
EP - 54
LA - eng
KW - character; irreducible supercuspidal representation; Fourier transforms; nilpotent measures; Lie algebra; weighted orbital integral; matrix coefficients
UR - http://eudml.org/doc/90112
ER -

References

top
  1. [A1] J. Arthur, The trace formula in invariant form, Ann. of Math.114 (1981), 1-74. Zbl0495.22006MR625344
  2. [A2] J. Arthur, The local behaviour of weighted orbital integrals, Duke Math. J.56 (1988), 223-293. Zbl0649.10020MR932848
  3. [A3] J. Arthur, The characters of supercuspidal representations as weighted orbital integrals, Proc. Indian Acad. Sci.97 (1988), 3-19. Zbl0652.22009MR983600
  4. [D] G van Dijk, Computation of certain induced characters of p-adic groups, Math. Ann.199 (1972), 229-240. Zbl0231.22018MR338277
  5. [HC] Harish- Chandra, "Admissible distributions on reductive p-adic groups," in Lie Theories and Their Applications, Queen's Papers in Pure and Applied Mathematics, Queen's University, Kingston, Ontario (1978), 281-347. Zbl0433.22012
  6. [J] D. Jabon, The supercuspidal representations of U(2,1) and GSp4 over a local field via Hecke algebra isomorphisms, thesis, University of Chicago, 1989. 
  7. [LS] G. Lusztig and N. Spaltenstein, Induced unipotent classes, J. London Math. Soc.19 (1979), 41-52. Zbl0407.20035MR527733
  8. [MW] C. Moeglin and J.L. Waldspurger, Modèles de Whittaker dégénérés pour des groupes p-adiques, Math. Z.196 (1987), 427-452. Zbl0612.22008MR913667
  9. [M] L. Morris, Tamely ramified supercuspidal representations of some classical groups, preprint, 1988. MR1399618
  10. [Mo1] A. Moy, Representations of GSp(4) over a p-adic field: part 1, Comp. Math.66 (1988), 237-284. Zbl0662.22012MR948308
  11. [Mo2] A. Moy, Representations of GSp(4) over a p-adic field: part 2, Comp. Math.66 (1988), 285-328. Zbl0662.22012MR948308
  12. [Mu] F. Murnaghan, Asymptotic behaviour of supercuspidal characters of p-adic GL3 and GL4: the generic unramified case, Pacific J. Math, to appear. Zbl0781.22014MR1216187
  13. [R] R. Ranga Rao, Orbital integrals in reductive groups, Ann. of Math.96 (1972), 505-510. Zbl0302.43002MR320232
  14. [Re] S. Reid, thesis, University of Warwick, 1974. 
  15. [Ro] F. Rodier, "Modèle de W hittaker et caractères de reprèsentations," in Non Commutative Harmonic Analysis, Lecture Notes in Math.466, Springer-Verlag, Berlin, Heidelberg, New York (1974), 151-171. Zbl0339.22014MR393355
  16. [Rog] J. Rogawski, An application of the building to orbital integrals, Comp. Math.42 (1981), 417-423. Zbl0471.22020MR607380
  17. [S] P.J. Sally, Jr., in preparation. 
  18. [ST] P.J. Sally, Jr. and M.H. Taibleson, Special functions on locally compact fields, Acta Math. 116 (1966), 279-309. Zbl0173.07005MR206349

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.