Les suites q -récurrentes linéaires

Jean-Paul Bézivin

Compositio Mathematica (1991)

  • Volume: 80, Issue: 3, page 285-307
  • ISSN: 0010-437X

How to cite

top

Bézivin, Jean-Paul. "Les suites $q$-récurrentes linéaires." Compositio Mathematica 80.3 (1991): 285-307. <http://eudml.org/doc/90125>.

@article{Bézivin1991,
author = {Bézivin, Jean-Paul},
journal = {Compositio Mathematica},
keywords = {recursive sequences; generalization of Skolem-Mahler-Lech theorem; generalization of a conjecture of Grothendieck; linear differential equations with polynomial coefficients},
language = {fre},
number = {3},
pages = {285-307},
publisher = {Kluwer Academic Publishers},
title = {Les suites $q$-récurrentes linéaires},
url = {http://eudml.org/doc/90125},
volume = {80},
year = {1991},
}

TY - JOUR
AU - Bézivin, Jean-Paul
TI - Les suites $q$-récurrentes linéaires
JO - Compositio Mathematica
PY - 1991
PB - Kluwer Academic Publishers
VL - 80
IS - 3
SP - 285
EP - 307
LA - fre
KW - recursive sequences; generalization of Skolem-Mahler-Lech theorem; generalization of a conjecture of Grothendieck; linear differential equations with polynomial coefficients
UR - http://eudml.org/doc/90125
ER -

References

top
  1. 1 Y. Amice, Les nombres p-adiques. Collection sup, no. 14, Les presses universitaires de France, Paris1975. Zbl0313.12104MR447195
  2. 2 B. Benzaghou, Algèbres de Hadamard, Bull. Soc. Math. France28, (1970) 209-252. Zbl0206.33203MR284431
  3. 3 J-P. Bézivin, Sur un théorème de G. Polya, J. reine und ang. Math.364 (1986) 60-68. Zbl0569.10004MR817638
  4. 4 J-P. Bézivin, Une généralisation du théorème de Skolem-Mahler-Lech, Quarterly J. of Math.40 (1989) 133-138. Zbl0678.10040MR997644
  5. 5 D.V. Chudnovsky and G.V. Chudnovsky, Applications of Padé approximants to the Grothendieck conjecture on linear differential equations, Lecture Notes in Math.1135, Springer-Verlag, New York, 85-167. Zbl0536.10029
  6. 6 B. Dwork, On the rationality of the dzeta function of an algebraic variety, Amer. J. of Math.82 (1960) 631-648. Zbl0173.48501MR140494
  7. 7 J.H. Evertse, On sums of S-units and linear recurrence, Compositio Math.53 (1984) 225-244. Zbl0547.10008MR766298
  8. 8 T. Honda, Algebraic differential equations, Symposia Math. no. 24 (1979) 169-204. Zbl0464.12013MR619247
  9. 9 N. Katz, Nilpotent connections and the monodromy theorem: Application of a result of Turrittin, Publ. Math. IHES. no.39 (1970) 355-412. Zbl0221.14007MR291177
  10. 10 N. Katz, Algebraic solutions of differential equations (p-curvature and the Hodge filtration), Invent. Math.18 (1972) 1-118. Zbl0278.14004MR337959
  11. 11 V. Laohakosol, Some extensions of the Skolem-Mahler-Lech theorem. Expositiones Math.7 (1989) 137-189. Zbl0695.10006MR1001254
  12. 12 C. Lech, A note on recurring series, Ark. Mat.2 (1953) 417-421. Zbl0051.27801MR56634
  13. 13 K. Mahler, On the taylor coefficients of rational functions, Proc. Cambridge. Phil. Soc.52 (1956) 39-48. Zbl0070.04004MR74503
  14. 14 G. Polya, Arithmetische Eigenschaften der Reihenentwicklungen rationaler Funktionen, J. reine und ang. Math.151 (1921) 1-31. JFM47.0276.02
  15. 15 A. Schinzel, Abelian binomials, power residues and exponential congruences, Acta Arithm.27 (1975) 397-420. Zbl0342.12002MR379432
  16. 16 H-P. Schlickewei and A.J. van der Poorten, The growth condition for recurrent sequences, Macquarie Math. Reports 82-0041, Northride, Australia 1982. 
  17. 17 E. Szemeredi, On sets of integers containing no k elements in arithmetic progression, Acta Arithm.27 (1975) 199-245. Zbl0303.10056MR369312
  18. 18 W.J. Trjiztinsky, Analytic theory of q-linear difference equations, Acta Math.61 (1933) 1-38. Zbl0007.21103JFM59.0455.02

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.