Perfect powers in arithmetical progression (II)
Compositio Mathematica (1992)
- Volume: 82, Issue: 1, page 107-117
- ISSN: 0010-437X
Access Full Article
topHow to cite
topShorey, T. N., and Tijdeman, R.. "Perfect powers in arithmetical progression (II)." Compositio Mathematica 82.1 (1992): 107-117. <http://eudml.org/doc/90144>.
@article{Shorey1992,
author = {Shorey, T. N., Tijdeman, R.},
journal = {Compositio Mathematica},
keywords = {perfect powers; arithmetical progression; exponential diophantine equation; least prime factor; greatest prime factor; greatest square free factor},
language = {eng},
number = {1},
pages = {107-117},
publisher = {Kluwer Academic Publishers},
title = {Perfect powers in arithmetical progression (II)},
url = {http://eudml.org/doc/90144},
volume = {82},
year = {1992},
}
TY - JOUR
AU - Shorey, T. N.
AU - Tijdeman, R.
TI - Perfect powers in arithmetical progression (II)
JO - Compositio Mathematica
PY - 1992
PB - Kluwer Academic Publishers
VL - 82
IS - 1
SP - 107
EP - 117
LA - eng
KW - perfect powers; arithmetical progression; exponential diophantine equation; least prime factor; greatest prime factor; greatest square free factor
UR - http://eudml.org/doc/90144
ER -
References
top- 1 A. Baker, A sharpening of the bounds for linear forms in logarithms I, Acta Arith.21, 117-129 (1972). Zbl0244.10031MR302573
- 2 P. Dénes, Über die Diophantische Gleichung xl + yl = czl, Acta Math.88, 241-251 (1952). Zbl0048.27503MR68560
- 3 P. Erdös, Note on the product of consecutive integers (II), J. London Math. Soc.14, 245-249 (1939). Zbl0026.38801MR240JFM65.1145.01
- 4 J.-H. Evertse, On the equation axn - byn = c, Compositio Math. 47, 289-315 (1982). Zbl0498.10014MR681611
- 5 G. Faltings, Endlichkeitssätze für abelsche Varietäten über Zahlkörpern, Invent. Math.71, 349-366 (1983). Zbl0588.14026MR718935
- 6 N.I. Feldman, An effective sharpening of the exponent in Liouville's theorem (Russian), Izv. Akad. Nauk SSSR Ser. mat.35, 973-990 (1971, English trans.: Math. USSR Izv.5, 985-1002. Zbl0259.10031MR289418
- 7 J. Mueller, Counting solutions of |axr - byr| ≤ h, Quart. J. Math. Oxford (2), 38, 503-513 (1987). Zbl0632.10014
- 8 L.J. Mordell, Diophantine Equations, Academic Press, London (1969). Zbl0188.34503MR249355
- 9 T.N. Shorey and R. Tijdeman, Exponential Diophantine Equations, Cambridge Tracts in Mathematics87 (1986). Zbl0606.10011MR891406
- 10 T.N. Shorey and R. Tijdeman, Perfect powers in arithmetical progression, J. Madras Univ., Section B, 51, 173-180 (1988). Zbl1194.11046
- 11 T.N. Shorey and R. Tijdeman, Perfect powers in products of terms in an arithmetical progression, Comp. Math.75, 307-344 (1990). Zbl0708.11021MR1070417
- 12 W. Wei, On the least prime in an arithmetic progression, Acta Math. Sinica29, 826-836 (1986) Zbl0621.10029MR888852
Citations in EuDML Documents
topNotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.