Perfect powers in arithmetical progression (II)

T. N. Shorey; R. Tijdeman

Compositio Mathematica (1992)

  • Volume: 82, Issue: 1, page 107-117
  • ISSN: 0010-437X

How to cite

top

Shorey, T. N., and Tijdeman, R.. "Perfect powers in arithmetical progression (II)." Compositio Mathematica 82.1 (1992): 107-117. <http://eudml.org/doc/90144>.

@article{Shorey1992,
author = {Shorey, T. N., Tijdeman, R.},
journal = {Compositio Mathematica},
keywords = {perfect powers; arithmetical progression; exponential diophantine equation; least prime factor; greatest prime factor; greatest square free factor},
language = {eng},
number = {1},
pages = {107-117},
publisher = {Kluwer Academic Publishers},
title = {Perfect powers in arithmetical progression (II)},
url = {http://eudml.org/doc/90144},
volume = {82},
year = {1992},
}

TY - JOUR
AU - Shorey, T. N.
AU - Tijdeman, R.
TI - Perfect powers in arithmetical progression (II)
JO - Compositio Mathematica
PY - 1992
PB - Kluwer Academic Publishers
VL - 82
IS - 1
SP - 107
EP - 117
LA - eng
KW - perfect powers; arithmetical progression; exponential diophantine equation; least prime factor; greatest prime factor; greatest square free factor
UR - http://eudml.org/doc/90144
ER -

References

top
  1. 1 A. Baker, A sharpening of the bounds for linear forms in logarithms I, Acta Arith.21, 117-129 (1972). Zbl0244.10031MR302573
  2. 2 P. Dénes, Über die Diophantische Gleichung xl + yl = czl, Acta Math.88, 241-251 (1952). Zbl0048.27503MR68560
  3. 3 P. Erdös, Note on the product of consecutive integers (II), J. London Math. Soc.14, 245-249 (1939). Zbl0026.38801MR240JFM65.1145.01
  4. 4 J.-H. Evertse, On the equation axn - byn = c, Compositio Math. 47, 289-315 (1982). Zbl0498.10014MR681611
  5. 5 G. Faltings, Endlichkeitssätze für abelsche Varietäten über Zahlkörpern, Invent. Math.71, 349-366 (1983). Zbl0588.14026MR718935
  6. 6 N.I. Feldman, An effective sharpening of the exponent in Liouville's theorem (Russian), Izv. Akad. Nauk SSSR Ser. mat.35, 973-990 (1971, English trans.: Math. USSR Izv.5, 985-1002. Zbl0259.10031MR289418
  7. 7 J. Mueller, Counting solutions of |axr - byr| ≤ h, Quart. J. Math. Oxford (2), 38, 503-513 (1987). Zbl0632.10014
  8. 8 L.J. Mordell, Diophantine Equations, Academic Press, London (1969). Zbl0188.34503MR249355
  9. 9 T.N. Shorey and R. Tijdeman, Exponential Diophantine Equations, Cambridge Tracts in Mathematics87 (1986). Zbl0606.10011MR891406
  10. 10 T.N. Shorey and R. Tijdeman, Perfect powers in arithmetical progression, J. Madras Univ., Section B, 51, 173-180 (1988). Zbl1194.11046
  11. 11 T.N. Shorey and R. Tijdeman, Perfect powers in products of terms in an arithmetical progression, Comp. Math.75, 307-344 (1990). Zbl0708.11021MR1070417
  12. 12 W. Wei, On the least prime in an arithmetic progression, Acta Math. Sinica29, 826-836 (1986) Zbl0621.10029MR888852

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.