Perfect powers in products of terms in an arithmetical progression (II)

T. N. Shorey; R. Tijdeman

Compositio Mathematica (1992)

  • Volume: 82, Issue: 2, page 119-136
  • ISSN: 0010-437X

How to cite

top

Shorey, T. N., and Tijdeman, R.. "Perfect powers in products of terms in an arithmetical progression (II)." Compositio Mathematica 82.2 (1992): 119-136. <http://eudml.org/doc/90149>.

@article{Shorey1992,
author = {Shorey, T. N., Tijdeman, R.},
journal = {Compositio Mathematica},
keywords = {perfect powers; arithmetical progression; exponential diophantine equation; greatest prime factor; improvements of effective results; boundedness of length},
language = {eng},
number = {2},
pages = {119-136},
publisher = {Kluwer Academic Publishers},
title = {Perfect powers in products of terms in an arithmetical progression (II)},
url = {http://eudml.org/doc/90149},
volume = {82},
year = {1992},
}

TY - JOUR
AU - Shorey, T. N.
AU - Tijdeman, R.
TI - Perfect powers in products of terms in an arithmetical progression (II)
JO - Compositio Mathematica
PY - 1992
PB - Kluwer Academic Publishers
VL - 82
IS - 2
SP - 119
EP - 136
LA - eng
KW - perfect powers; arithmetical progression; exponential diophantine equation; greatest prime factor; improvements of effective results; boundedness of length
UR - http://eudml.org/doc/90149
ER -

References

top
  1. [1] A. Baker: A sharpening of the bounds for linear forms in logarithms I, Acta Arith.21 (1972), 117-129. Zbl0244.10031MR302573
  2. [2] P. Dénes: Über die Diophantische Gleichung xl+yl = czl, Acta Math.88 (1952), 241-251. Zbl0048.27503MR68560
  3. [3] P. Erdös: Note on the product of consecutive integers (II), J. London Math. Soc.14 (1939), 245-249. Zbl0026.38801MR240JFM65.1145.01
  4. [4] P. Erdös and J.L. Selfridge: The product of consecutive integers is never a power, Illinois Jour. Math.19 (1975), 292-301. Zbl0295.10017MR376517
  5. [5] J.-H. Evertse:On the equation axn-byn=c, Compositio Math.47 (1982), 289-315. Zbl0498.10014MR681611
  6. [6] R. Marszalek: On the product of consecutive elements of an arithmetic progression, Monatsh. Math.100 (1985), 215-222. Zbl0582.10011MR812613
  7. [7] T.N. Shorey: Some exponential diophantine equations, in A. Baker (ed.) New Advances in Transcendence Theory, Cambridge University Press, 1988, pp. 352-365. Zbl0658.10024MR972011
  8. [8] T.N. Shorey: Some exponential diophantine equations II, Number Theory and Related Topics, Tata Institute of Fundamental Research, Bombay, 1988, pp. 217-229. Zbl0748.11022MR1441334
  9. [9] T.N. Shorey and R. Tijdeman: Perfect powers in products of terms in an arithmetical progression, Compositio Math.75 (1990), 307-344. Zbl0708.11021MR1070417
  10. [10] T.N. Shorey and R. Tijdeman: Perfect powers in arithmetical progression II, Compositio Math.82 (1992), 107-117. Zbl0763.11014MR1154163
  11. [11] Kunrui Yu: Linear forms in p-adic logarithms II, Compositio Math.74 (1990), 15-113. Zbl0723.11034MR1273651

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.